时间序列平稳性检验.docVIP

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
时间序列平稳性检验分析 姓 名 xxx 学 院 xx学院 专 业 xxxx 学 号 xxxxxxxxxx 时间序列平稳性分析检验 时间序列是一个计量经济学中的概念,时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题。 一、时间序列平稳性的定义 假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件: 1)均值E(Xt)=u是与时间t 无关的常数; 2)方差Var(Xt)=s2是与时间t 无关的常数; 3)协方差Cov(Xt, Xt+k)= gk 是只与时期间隔k有关,与时间t 无关 的常数。 则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochastic process)。 eg: 一个最简单的随机时间序列是一具有零均值同方差的独立分布序列: Xt=mt , mt~N(0,s2) 该序列常被称为是一个白噪声。 由于Xt具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的。 eg: 另一个简单的随机时间列序被称为随机游走,该序列由如下随机过程生成: Xt=Xt-1+mt 这里,mt是一个白噪声。容易知道该序列有相同的均值:E(Xt)=E(Xt-1) 为了检验该序列是否具有相同的方差,可假设Xt的初值为X0,则易知 X1=X0+m1 X2=X1+m2=X0+m1+m2 … … Xt=X0+m1+m2+…+mt 由于X0为常数,mt是一个白噪声,因此Var(Xt)=ts2 即Xt的方差与时间t有关而非常数,它是一非平稳序列 二、时间序列平稳性检验的方法 对时间序列进行平稳性检验中,实际上假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关(autocorrelation),导致DF检验无效。另外,如果时间序列包含有明显的随时间变化的某种趋势(如上升或下降),则也容易导致上述检验中的自相关随机误差项问题。 为了保证DF检验中随机误差项的白噪声特性,Dicky和Fuller对DF检验进行了扩充,形成了ADF(Augment Dickey-Fuller )检验。 (1)、单位根检验 单位根检验(unit root test)是统计检验中普遍应用的一种检验,在这里不做具体阐述。另一检验方法在实际中比较常用,下面会详细介绍。 (2)、ADF检验 ADF检验是通过下面三个模型完成的: 模型3 中的t是时间变量,代表了时间序列随时间变化的某种趋势(如果有的话)。 检验的假设都是:针对H1: d0,检验 H0:d=0,即存在一单位根。模型1与另两模型的差别在于是否包含有常数项和趋势项。 ADF检验模型的确定: 首先,我们来看如何判断检验模型是否应该包含常数项和时间趋势项。解决这一问题的经验做法是:考察数据图形 其次,我们来看如何判断滞后项数m。在实证中,常用的方法有两种: (1)渐进t检验。该种方法是首先选择一个较大的m值,然后用t检验确定系数是否显著,如果是显著的,则选择滞后项数为m;如果不显著,则减少m直到对应的系数值是显著的。 (2)信息准则。常用的信息准则有AIC信息准则、SC信息准则,一般而言,我们选择给出了最小信息准则值的m值 最后,根据数据分析是否具有平稳性。 三、-格兰杰因果关系检验 由于时间序列具有平稳性而引发出另一概念-------格兰杰因果关系检验 进行格兰杰因果关系检验的一个前提条件是时间序列必须具有平稳性,否则可能会出现虚假回归问题。因此在进行格兰杰因果关系检验之前首先应对各指标时间序列的平稳性进行单位根检验(unit root test)。常用增广的迪基—富勒检验(ADF检验)来分别对各指标序列的平稳性进行单位根检验。 沪深300 指数与股指期货的引导关系为了得到沪深300 现货指数和期货指数的引导关系,选取沪深300 现货指数与期货主力合约IF1006 在5 月17 日至6 月7 日16 个交易日内的一分钟指数(数据长度为3840),进行实证分析

文档评论(0)

185****7617 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档