第八讲拉曼光谱分析课件.ppt

  1. 1、本文档共61页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第八讲拉曼光谱分析课件

清华大学化学系 表面与材料实验室 拉曼光谱分析 吴志国 兰州大学等离子体与金属材料研究所 主要内容 红外光谱(IR) 拉曼光谱(Raman) 紫外-可见光谱 激光拉曼光谱基础 1928 C.V.Raman发现拉曼散射效应 1960 随着激光光源建立拉曼光谱分析 拉曼光谱和红外光谱一样,也属于分子振动光谱 生物分子,高聚物,半导体,陶瓷,药物等分析 ,尤其是现代材料分析 拉曼光谱的原理 拉曼效应: 当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射。 但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。其散射光的强度约占总散射光强度的10-3。 拉曼散射的产生原因是光子与分子之间发生了能量交换,改变了光子的能量。 拉曼原理 斯托克斯(Stokes)拉曼散射 分子由处于振动基态E0被激发到激发态E1时,分子获得的能量为ΔE,恰好等于光子失去的能量:ΔE=E1-E0,由此可以获得相应光子的频率改变Δν=ΔE/h Stokes散射光线的频率低于激发光频率 。反Stokes线的频率νas=ν0+ΔE/h,高于激发光源的频率。 拉曼散射的产生与分子的极化率α有关系 α是衡量分子在电场作用下电荷分布发生改变的难易程度,或诱导偶极距的大小,即单位电场强度诱导偶极距的大小。 散射光与入射光频率的差值即是分子的振动频率 拉曼原理 拉曼位移(Raman Shift) 斯托克斯与反斯托克斯散射光的频率与激发光源频率之差Δν统称为拉曼位移。 斯托克斯散射的强度通常要比反斯托克斯散射强度强得多,在拉曼光谱分析中,通常测定斯托克斯散射光线。 拉曼位移取决于分子振动能级的变化,不同的化学键或基态有不同的振动方式,决定了其能级间的能量变化,因此,与之对应的拉曼位移是特征的。这是拉曼光谱进行分子结构定性分析的理论依据。 拉曼原理 拉曼活性: 并不是所有的分子结构都具有拉曼活性的。分子振动是否出现拉曼活性主要取决于分子在运动过程时某一固定方向上的极化率的变化。 对于分子振动和转动来说,拉曼活性都是根据极化率是否改变来判断的。 对于全对称振动模式的分子,在激发光子的作用下,肯定会发生分子极化,产生拉曼活性,而且活性很强;而对于离子键的化合物,由于没有分子变形发生,不能产生拉曼活性。 拉曼活性 拉曼原理-LRS与IR比较 拉曼光谱是分子对激发光的散射,而红外光谱则是分子对红外光的吸收,但两者均是研究分子振动的重要手段,同属分子光谱。 一般,分子的非对称性振动和极性基团的振动,都会引起分子偶极距的变化,因而这类振动是红外活性的;而分子对称性振动和非极性基团振动,会使分子变形,极化率随之变化,具有拉曼活性。 因此,拉曼光谱适合同原子的非极性键的振动。如C-C,S-S,N-N键等,对称性骨架振动,均可从拉曼光谱中获得丰富的信息。而不同原子的极性键,如C=O,C-H,N-H和O-H等,在红外光谱上有反映。相反,分子对称骨架振动在红外光谱上几乎看不到。 可见,拉曼光谱和红外光谱是相互补充的。 LRS与IR比较 (1) 红外光谱的入射光及检测光均是红外光,而拉曼光谱的入 射光大多数是可见光 ,散射光也是可见光; (2) 红外谱测定的是光的吸收,横坐标用波数或波长表示,而拉曼光谱测定的是光的散射,横坐标是拉曼位移; (3) 两者的产生机理不同。红外吸收是由于振动引起分子偶极矩或电荷分布变化产生的。拉曼散射是由于键上电子云分布产生瞬间变形引起暂时极化,是极化率的改变,产生诱导偶极矩,当返回基态时发生的散射。散射的同时电子云也恢复原态; (4) 红外光谱用能斯特灯、碳化硅棒或白炽线圈作光源而拉曼光谱仪用激光作光源; LRS与IR比较 (5) 用拉曼光谱分析时,样品不需前处理。而用红外光谱分析样品时,样品要经过前处理,液体样品常用液膜法和液体样品常用液膜法,固体样品可用调糊法,高分子化合物常用薄膜法,体样品的测定可使用窗板间隔为2.5-10 cm的大容量气体池; (6) 红外光谱主要反映分子的官能团,而拉曼光谱主要反映分子的骨架主要用于分析生物大分子; (7) 拉曼光谱和红外光谱可以互相补充,对于具有对称中心的分子来说,具有一互斥规则:与对称中心有对称关系的振动,红外不可见,拉曼可见;与对称中心无对称关系的振动,红外可见,拉曼不可见。 LRS与IR比较 对任何分子可以粗略地用下面的原则来判断其拉曼或红外活性: 相互排斥规则:凡具有对称中心的分子,若其分子振动对拉曼是活性的,则其红外就是非活性的。反之,若对红外是活性的,则对拉曼就是非活性的。 相互允许规则:凡是没有对称中心的分子,若其分子振动对拉曼是活性的,则红外也

文档评论(0)

jiayou10 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8133070117000003

1亿VIP精品文档

相关文档