基干EEMD―IGSA―LSSVM超短期风电功率预测.doc

基干EEMD―IGSA―LSSVM超短期风电功率预测.doc

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基干EEMD―IGSA―LSSVM超短期风电功率预测

基于EEMD―IGSA―LSSVM的超短期风电功率预测   摘 要:为了提高风电场输出功率的预测精度,在保证安全操作的前提下,建立了一种基于集合经验模态分解(EEMD)、改进引力有哪些信誉好的足球投注网站算法(IGSA)、最小二乘支持向量机(LSSVM)相结合的风电功率组合预测模型.首先运用EEMD算法将风电功率时间序列分解成一系列复杂度差异明显的子序列;其次利用相空间重构(PSR)对已分解好的子序列进行重构,对重构后的每个子序列分别建立IGSA-LSSVM预测模型,为分析不同核函数构造LSSVM的差异性,建立了8种核函数LSSVM预测模型,利用IGSA算法求解其模型;最后以中国内蒙古地区的某一风电场为算例,仿真及验算结果表明,利用IGSA算法寻优得到的指数径向基核函数核参数和惩罚因子构建的LSSVM模型具有较高的预测准确性;与EEMD-WNN,EEMD-PSO-LSSVM等5种常规组合模型相比,所提出的指数径向基核函数的EEMD-IGSA-LSSVM组合模型能有效、准确地进行风电功率预测. 关键词:集合经验模态分解;风功率预测;最小二乘向量机;改进引力有哪些信誉好的足球投注网站算法;指数径向基核函数 中图分类号:TU375 文献标识码:A 文章编号:1674-2974(2016)10-0070-09 Abstract: In order to improve the prediction accuracy of the output power of the wind farm under the premise of ensuring safe operation, a combination of wind power forecasting model based on Ensemble Empirical Mode of Decomposition (EEMD), Improved Gravitational Search Algorithm (IGSA) and Least Squares Support Vector Machine (LSSVM) was established. Firstly, the wind power time series was decomposed into a series of subsequences with significant differences in complexity by using EEMD algorithm. Secondly, the decomposed subsequence was reconstructed by the phase space reconstruction (PSR), and then, an IGSA-LSSVM prediction model of each sub-sequence reconstructed was established respectively. In order to analyze the differences of LSSVM which sets up different kernel functions, eight kinds of kernel function LSSVM prediction models were established, and the IGSA algorithm was adopted to solve those models. Finally, taking a wind farm in Inner Mongolia of China as an example, the simulation and calculation results illustrate that LSSVM prediction model based on the exponential radial basis kernel function and penalty factor obtained by using the IGSA algorithm has higher prediction accuracy. Compared with five conventional combined models such as EMD-WNN and EMD-PSO-LSSVM, the combined model EEMD-IGSA-LSSVM of exponential radial basis kernel function mentioned above can forecast wind power in an effective and accurate way.

您可能关注的文档

文档评论(0)

linsspace + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档