- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基干RBF神经网络PID自校正控制研究
基于RBF神经网络的PID自校正控制研究 摘要:针对传统的自校正PID控制器不能有效的实现工业工程中非线性系统、不确定性系统的在线参数的整定和实时控制作用,提出了一种基于径向基(RBF)神经网络的PID自校正控制方法,并分别用自校正PID控制和基于RBF神经网络的PID自校正控制进行系统仿真实验,仿真结果表明:基于RBF神经网络的PID自校正控制方法可以根据非线性系统、不确定系统对象的变化完成参数的在线动态修正,同时也增强了系统的自适应调整能力
关键词:PID自校正控制;非线性系统;自适应控制;RBF神经网络
中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2016)25-0155-03
Abstract: The setting of on-line parameter and real-time control of the non-linear system and non-determinable system in industrial engineering could not be resolved by means of traditional self-turning PID controller, consequently a new method of PID self-turning control based on RBF neural network was proposed in this paper. PID self-turning control and PID self-turning control based on RBF neural network were used to for system emulation experiment, respectively. The results showed that PID self-turning control based on RBF neural network can achieve on-line dynamic modification of the parameters according to the non-linear system and the alteration of uncertainty system object. At the same time, the ability of self adapting adjustment was enhanced.
Key words: PID self-turning control; non-linear system ; adaptive control; RBF neural network
1 概述
传统的自校正PID控制是吸取了自校正控制的思想并将其与常规PID控制相结合应用工业工程中,在参数发生变化较小和对象受到的随机波动较小时,在一定程度上显示了参数的整定能力和系统的自适应能力,然而对于一些不确定性,特别是时变性和非线性的系统往往不能保证具有有效的控制特性[1,2]。因此,本文提出了基于RBF神经网络的PID自校正控制方法
该方法是利用RBF是局部逼近的神经网络,具有收敛速度快,并且可以有效避免局部极小值的问题,将其与自校正PID控制相结合,来实现参数的在线整定[3,4]。该方法适于实时控制的要求,能够有效地解决复杂的工业工程系统中非线性系统的参数在线整定的问题
2 自校正PID控制
自校正PID控制器的基本形式采用的是增量式PID控制器,运用递推算法对对象参数进行估计,并通过极点配置方法将估计结果进行控制器参数的整定
设被控对象为 ,式中系统的输入和输出分别用u(k)和y(k)表示,e(k)为常值干扰,d≥1为纯延时
由图1仿真结果可知,系统需要一段时间对参数进行估计,所以在系统运行的初始阶段出现了大幅度振荡,系统经过一段时间的整定后便出现了良好的控制结果。一般情况下,系统稳定了之后,才能投入工作。可以从参数的区间可以得出参数的估计值:a1=-1.6060,a2=0.6066,b0=0.1065,b1=0.0902
自校正PID控制算法,能够对被控对象的输入u(k)和输出y(k)进行实时采集,根据采集到的数据对参数进行估计,在一定程度上完成了PID参数的整定
3 基于RBF神经网络的PID自校正控制算法
RBF神经网络的基本思想是:用RBF作为隐含层节点的“基”构成隐含层空间,这样可以不通过权进行连接将输入矢量直接映射到隐含空间。这种非线性关系的确定就是通过RBF的参数确定的[5,6]。隐含层空间到输出空间的映射是线性的,即网络的输出是隐含层节点
文档评论(0)