第4章动态规划概要.ppt

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第4章动态规划概要

第4章 动态规划 一、动态规划的基本思想 动态规划算法通常用于求解具有某种最优性质的问题。 在这类问题中,可能会有许多可行解。 每一个解都对应于一个值,我们希望找到具有最优值的解。 基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。 如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。 我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。 这就是动态规划法的基本思路。 具体的动态规划算法多种多样,但它们具有相同的填表格式。 二、设计动态规划法的步骤 找出最优解的性质,并刻画其结构特征; 递归地定义最优值(写出动态规划方程); 以自底向上的方式计算出最优值; 根据计算最优值时得到的信息,构造一个最优解。 步骤1~3是动态规划算法的基本步骤。 在只需要求出最优值的情形,步骤4可以省略; 若需要求出问题的一个最优解,则必须执行步骤4。 三、动态规划问题的特征 动态规划算法的有效性依赖于问题本身所具有的两个重要性质: 最优子结构: 当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。 重叠子问题: 在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,在以后尽可能多地利用这些子问题的解。 * 4.1 最长公共子序列 若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。 例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。 给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。 例如,序列Z={B,C,B}是序列X={A,B,C,B,D,A,B}和Y={B,D,C,A,B,A}的公共子序列。 例如,序列Z={B,C,B,A}也是序列X={A,B,C,B,D,A,B}和Y={B,D,C,A,B,A}的公共子序列。 给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。 * 4.1.1 最长公共子序列的结构 例如,序列Z={B,C,B,A}是序列X={A,B,C,B,D,A,B}和Y={B,D,C,A,B,A}的最长公共子序列。 设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk} ,则 若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。 若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。 若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列。(为什么没有若xm≠yn且zk≠xm且zk≠yn,则Z是xm-1和Yn-1的最长公共子序列呢?) 2个序列的最长公共子序列包含了这2个序列的前缀的最长公共子序列。 最长公共子序列问题具有最优子结构性质。 4.1.2 子问题的递归结构 由最长公共子序列问题的最优子结构性质可知,要找出X和Y的最长公共子序列,可按以下方式递归地进行: 当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。 当xm≠yn时,必须解两个子问题,即找出Xm-1和Y的一个最长公共子序列及X和Yn-1的一个最长公共子序列。这两个公共子序列中较长者为X和Y的一个最长公共子序列。 例如,序列X={A,B,C,B}和Y={B,D,C}的最长公共子序列。 (用树来描述...) * 用c[i][j]记录序列Xi和Yj的最长公共子序列的长度。 Xi={x1,x2,…,xi};Yj={y1,y2,…,yj}。 当i=0或j=0时,空序列是Xi和Yj的最长公共子序列。 故此时C[i][j]=0。 其它情况下,由最优子结构性质可建立递归关系如下: * 填表过程: 例如,序列X7={A,B,C,B,D,A,B},Y6={B,D,C,A,B,A}。 * 0 1 2 3 4 5 6 yi B D C A B A 0 xi 1 A 2 B 3 C 4 B 5 D 6 A 7 B i j 数组c 4.1.3 计算最优值 计算最长公共子

文档评论(0)

dajuhyy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档