小波变换原理与应用.pptVIP

  1. 1、本文档共49页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
* 小波的快速算法——Mallat算法 Mallat算法的降采样 * 小波的快速算法——Mallat算法 小波分解树 * 小波的快速算法——Mallat算法 到此我们已经知道离散小波变换是怎么样分析或者怎样来分解一个信号,这个过程通常也称为分解分析,那么自然想到另外一个对应的问题就是如何将这些分解得到分量能够整合到一起恢复原信号并且没有任何的信息损失,这一过程就称为小波重构或者小波合成,实质上就是逆离散小波变换(Inverse Discrete Wavelet Transform,简称:IDWT)。在离散小波变换或小波分解的过程中包含了滤波和降采样,那么在小波重构过程中需要进行过采样和滤波。过采样是通过在相邻采样点之间插入零值的来实现的,利用过采样可以使得信号分量的长度增加为原来的两倍,以达到和需要重构信号一致的采样数据长度。 * 小波的快速算法——Mallat算法 * 小波的快速算法——Mallat算法 塔式分解和重构示意图 * 小波的快速算法——Mallat算法 局部分量的重构 在一些工程应用中,只需要关心信号中的某个分量,此时对细节分量和近似分量的单独重构成为必要,通过将其他分量系数置零的方式,利用Mallat算法是非常容易的 * 小波包分解算法——精细化处理 小波包分析可以看作是小波分解的一种推广方法,利用小波包进行分析可以得到对信号更为精细的分析结果。通过将频带进行多层次划分,对多分辨分析没有细分的高频分量部分进行进一步的分解,并根据被分析信号特征,通过自适应的选择相应频带,达到与信号频谱的匹配,实现精细化处理。小波包原子是一种被时间、尺度和频率来表征的函数波形,对于一个给定的正交小波函数,我们能够在此基础上生成一组基,这组基一般称为小波包基。简单的说,小波包就是一个函数族,可以由这组函数族构造出L2(R)的标准正交基库,从这组标准正交基库中可以选择出多组标准正交基,对于多分辨分析小波变换(正交小波变换)只是选择了其中的一组基,从这个意义上讲小波包就是小波变换的一种推广。 * 小波包分解算法——精细化处理 小波包分解树 * 小波的工程应用——时频分析与降噪 时间-尺度-小波系数图 小波分解可以得到一组小波细节分量和近似分量系数,将时间-尺度-小波系数联合表示,就得到了信号的时间-尺度分析结果,不过这里带来两个问题:第一小波的尺度是不连续的,这样得到的时间-尺度-小波系数表示解读起来比较困难,虽然根据框架理论可以推测到冗余系数在时间-尺度平面上产生的额外的分布信息,但是这毕竟显得不够直观;第二个问题就是,有时候想在时间-尺度时频表示和时间-频率时频表示中进行比较分析,那么尺度和频率之间应该存在着一定的关系,这种关系是如何确立的 * 小波的工程应用——时频分析与降噪 尺度与频率的关系 尺度和频率之间存在一个倒数关系,这个倒数关系式和信号的采样周期以及选择的小波基函数的中心频率有关,假设尺度因子为a,信号的采样周期为?,小波基函数的中心频率为fc,那么和尺度因子a对应的频率fa可以用下面的式子来计算 * 小波的工程应用——时频分析与降噪 * 小波的工程应用——时频分析与降噪 * 小波的工程应用——时频分析与降噪 仿真信号的小波时频表示(cmor3-3小波) * 小波的工程应用——时频分析与降噪 小波在工程上应用的困难:分解层数的确定和小波基函数的合理选择,仿真信号的时频表示(cgau6 ) * 小波的工程应用——时频分析与降噪 小波降噪 小波降噪主要包括:小波模极大值降噪、基于小波系数尺度间相关性的去噪法、小波阈值去噪法。其中以小波阈值降噪方法最为经典。小波阈值降噪法的基本原理是,经小波变换后得到的小波系数,包含信号本身信息和噪声信息,一般情况下,随机噪声的小波系数非常小,这样可以设定一个阈值,对小于该阈值的小波系数置零,然后利用处理后的小波系数重构原信号即可实现降噪。根据阈值选择方法的不同,可以分为硬阈值、软阈值和自适应阈值,也有些研究者在此基础上对阈值函数进行了改进,提出了改进阈值函数。 * 小波的工程应用——时频分析与降噪 硬阈值 软阈值 * 小波的工程应用——时频分析与降噪 * 小波的工程应用——时频分析与降噪 * 小波变换的结合应用——小波网络等 随着小波的发展,目前小波在工程上与其他学科交叉应用变得普遍 小波变换与神经网络的结合(1990年张清华),实现精确的函数拟合和预测; 多小波的快速发展(二代小波、三代小波) 正交小波变换在滤波领域的应用(对滤波信号进行预处理,得到一组正交信号,利用正交信号的优良性质在滤波处理后重构回原信号) 小波变换与ICA算法的结合(解决了单通道混合信号的分离问题) * 小波变换原理与应用 Wavelet Transform Theory an

文档评论(0)

jdy261842 + 关注
实名认证
文档贡献者

分享好文档!

1亿VIP精品文档

相关文档