中文分类竞赛准备.pptVIP

  1. 1、本文档共17页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
中文分类竞赛准备

An Efficient Centroid Based Chinese Web Page Classifier LIU Hui EE Dept of Tsinghua Univ. China Aug 28, 2003 Outline Background Basic Technique Classifier Design Implementation Idea Architecture Feature Experiment Summary Background of Web Page Classification Explosive information need organization Digital Library Search Engine Special (Categorized) Sites Research hot points Data Mining Information Retrieval Pattern Recognition Text Automatic Categorization Background of Our Classifier Net-compass Search Engine An emerging large and distributed search engine Embedded in its new version Chinese web page categorization competition Held on March 14th –15th, 2003 Ranked first Workgroup EE Dept of Tsinghua Univ., 3 master students 1 undergraduate student Basic Text Categorization System Feature Selection Term Frequency (TF) Term Frequency Inverse Document Frequency (TF.IDF) Mutual Information (MI) Statistics Training - Statistical Machine Learning Vector Distance Centroid Based Method k-Nearest Neighbor: lazy learning Support Vector Machine: Structural Risk Minimization Feedback Combining Classifiers Neuron Network Boosting method Probability Na?ve Bayes: Pr (Term/Class) - Pr(Text/Class) Idea Large Database Net-compass Search Engine Fast Speed Tolerable Precision Web Resource Fast changing Easy building Classifier Fast Training Supporting multi-language Word segmentation Easy Training Set Building Updating Architecture Features Preprocessing Chinese Word Segmentation Dictionary built on search engine log Adaptability, Manageability, Accuracy Maximum Matching Segmenting Method Fast, tolerable accuracy Noise Filtering Stop word: common word, abandon word Advertising links: length content Features Combined Feature Selection Statistics: tend to choose high-freq words Mutual Information: tend to low-freq words Subspace Features Adaptive Factors Adjust model, compensate for deficiency of training set Class Weight VIP word factor Implementa

文档评论(0)

2752433145 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档