几种基于深度学习的目标检测(SPPNet,Fast,Faster R-CNN,YOLO).pptx

几种基于深度学习的目标检测(SPPNet,Fast,Faster R-CNN,YOLO).pptx

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
几种基于深度学习的目标检测(SPPNet,Fast,Faster R-CNN,YOLO)

SPP Net 1.结合空间金字塔方法实现CNNs的多尺度输入 一般CNNs后接full-connect layer或者classifier,它们都需要固定的输入尺寸。因此不得不对输入数据进行crop或warp,这些预处理会造成数据的丢失或几何学上的失真。 SPP Net 的第一个贡献是将空间金字塔的思想加入到CNNs中,实现了数据的多尺度输入。 Spatial Pyramid Pooling Layer(SPP) 如图,在卷基层和全连接层之间加入SPP layer。此时网络的输入可以是任意尺寸,在SPP layer中每一个pooling的filter会根据输入调整大小,而SPP的输出尺寸始终是固定的。 2.只对原图提取一次卷积特征 在R-CNN中,每个proposed region先rescale成统一大小,然后分别作为CNNs的输入,这样是很低效的。 在SPP Net中,只对原图进行一次卷积得到整张图的feature map,然后找到每个proposed region在feature map上的映射patch,将此patch作为每个proposed region的卷积特征输入到SPP layer和之后的层。节省了大量的计算时间,比R-CNN有一百倍左右的加速。 Fast R-CNN整体结构 如图,Fast R-CNN的网络有两个输出层,一个softmax,一个bbox regressor(相对的R-CNN,SPP Net中分类和回归是两个部分,这里集成在了同一个网络中)。而且加入了一个RoI pooling layer(类似于一个尺度的SPP layer)。注意:Fast R-CNN提取建议区域的方法依然是select search。 RoI pooling layer 这是SPP pooling的一个简化版本,可以看做是只有一个尺度 filter的‘金字塔’。输入是N个整幅图的feature map和一组R个RoI(proposed region)。每个特征映射都是H*W*C,每个RoI是一个元组(n,r,c,h,w),n是特征映射的索引,r,c,h,w分别是RoI的左上角坐标和高与宽。输出是max-pooling过得特征映射H’xW’xC,如上图中红色框线。 RoI-centric sampling与Image-centric sampling RoI-centric sampling:从所有图片的所有RoI中随机均匀取样,这样每个SGD的mini-batch中包含了不同图像中的样本(SPP Net采用)。SPP Net的反向传播没有到SPP pooling之前的层,因为反向传播需要计算每一个RoI感受野的卷基层,通常会覆盖整幅图像,又慢又耗内存。FR-CNN想要解决这个限制。 Image-centric sampling:mini-batch采用分层采样,先对图像采样,再对RoI采样。将采样的RoI限定在个别图像内,这样同一图像的RoI共享计算和内存。通过这种策略,实现了端到端的反向传播,可以fine-tuning整个网络。 Multi-task loss FR-CNN的有两个网络输出层,将原来与网络分开的bbox regression的操作整合在了网络中。并设计了一个同时优化两个输出层的loss函数。 Faster R-CNN Faster R-CNN的主要贡献是设计了提取建议区域的网络Region Proposal Network(RPN)。代替了费时4的select search,使检测速度大为提高。下图为Faster R-CNN的结构图,黄色部分为RPN,可以看出除了RPN,其它部分继承了FR-CNN的结构。 RPN整体结构 RPN的网络结构类似于FR-CNN,连接与最后卷基层输出的feature map,有一个RoI层,两个输出层,一个输出滑窗为建议区域的概率,另一个输出bbox回归的offset。其训练方式也类似于FR-CNN。注意:RPN与FR-CNN共用卷积层。 RPN RPN通过一个滑动窗口(图中红色框)连接在最后一个卷积层输出的feature map上,然后通过全连接层调整到256-d的向量,作为输出层的输入。同时每个滑动窗对应k个anchor boxes,在论文中使用3个尺寸和3个比例的3*3=9个anchor。每个anchor对应原图上一个感受野,通过这种方法提高scale-invariant。 RPN与FR-CNN共享卷基层 为了使共用的卷积层在训练RPN和FR-CNN时都会收敛,论文里设计了一个四步训练的策略: (1):对RPN进行end-to-end的训练,这里网络使用ImageNet pre-trained model进行初始化。 (2):使用第一步RPN生成的建议区域训练FR-CNN

文档评论(0)

shuwkb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档