基于梯度信息与HVS滤波器的无参考清晰度评价算法-中国图象图形学报.doc

基于梯度信息与HVS滤波器的无参考清晰度评价算法-中国图象图形学报.doc

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于梯度信息与HVS滤波器的无参考清晰度评价算法-中国图象图形学报

中图法分类号:TN911.73 文献标识码:A 文章编号: 论文引用格式: 融合梯度信息与HVS滤波器的无参考清晰度评价算法 应凌楷,张聪聪 310018 摘 要 :目的:目前无参考图像质量评价算法的性能存在较大的提升空间,为了清晰度评价技术HVS滤波器的无参考清晰度评价算法(GI-F)。方法:该算法首先利用梯度算子计算各像素点的梯度信息,再通过HVS滤波器得到加权和作为图像的清晰度指标。结果:在公开数据库LIVE、TID2008和CSIQ上的实验结果表明,GI-F与S3(Spectral and Spatial Sharpness)、CPBD(Cumulative Probability of Blur Detection)和LPC-SI(Local Phase Coherence-based Sharpness Index)相比,性能指标RMSE(Root Mean Squared Error)、PLCC(Pearson Linear Correlation Coefficient)和SROCC(Spearman Rank-Order Correlation Coefficient)分别提升了20.66%、4.61%和3.33%;同时还的相比了%。结论:该算法只需耗费更少的时间即可计算出与人眼感知更加接近的客观清晰度指标,可广泛用于无参考图像情况下的清晰度指标计算场合,同时还可以通过 关键词 :图像质量评价;无参考清晰度评价;梯度信息;人眼视觉系统;高通滤波器自动聚焦 A No-reference sharpness assessment algorithm with fusion of Gradient information and HVS filter Ying Lingkai College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China Abstract :Objective: Distortion in digital images, inflicting suffering on the vision experience, is potentially everywhere. To some extent, distorted image can influence further research, such as the analyzing and understanding of images. In addition, the method of calculating the sharpness of image is essential for the implementation of autofocus. Indubitably, exploring the mechanism underneath the surface can perfect life progressively. Currently, there is room for improvement when it comes to the performance of no-reference image quality assessment (IQA). To upgrade the technology of sharpness assessment, an algorithm which is called GI-F and based on gradient information and HVS filter is proposed. Method: What has been demonstrated and widely accepted is that the human vision system (HVS) is highly sensitive to gradient information. In the algorithm proposed, the gradient information which is of familiarity is first calculated via the gradient operator that researchers in an accumulating number apply for the computing of image quality. Human studies in neurology have also contributed to the development of other discip

文档评论(0)

170****0571 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档