植物的向光性研究.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
植物向光性的研究 摘要 植物的向光性反应的机理至今仍未完全揭示和证实。 植物生长发生定向弯曲的现象称为向光性( phototropism)。植物感受光的位置主要有茎尖、根尖、胚芽鞘尖端、叶片或生长中的茎。1) 光敏色素( phytochrome, phy ) , 主要感受红光( 620-700nm) 和远红光( 700-800nm) 。 2) 蓝光受体, 主要是隐花色素( cryptochrome, cry ) 感受蓝光和近紫外光区域的光UV-A( 320-380 nm) ; 向光素( phototropin, phot ) , 感受蓝光( 380-500nm) 。 3) 吸收蓝绿光的ZTLS( Zeit lupes) 家族,主要感受蓝绿光( 450-520 nm)。 4) 未鉴定的UV-B 受体, 感受紫外光B区域的光( 波长280-320 nm) 1.1光敏色素 光敏色素的生理作用从种子萌发到开花、结果影响到衰老。1959 年Butler等 用双波长分光光度计观测到对黄化玉米( Zeamays ) 幼芽或其蛋白提取液照射红光后, 在RL区的吸收减少, 远红光区的吸收增加;而照射远红光后RL区的吸收增加,在FR区的吸收减少。这种吸收差异的光谱变化,可以反复发生多次。次年4月Harry Borthwick和物理化学家Sterling Browm Hendricks 把这种吸收红光、远红光可逆转换的色素命名为光敏色素。 光敏色素是植物体内含量甚微的、易溶于水的、浅蓝色的色素蛋白质,是由2 个亚基组成的二聚体, 相对分子质量为250 kD。光敏色素对生长素蛋白的磷酸化可能是光敏色素和IAA 调控植物发育的分子机制。 1.2蓝光受体 植物具备一套复杂的由两种蓝光受体和多种信号转导下游组分组成的蓝光感应系统,通过感受光照强度、光的方向和光周期,调节自身对蓝光的应答。 1.2.1隐花色素 隐花色素(拟南芥中包括CRY1和CRY2)是一种类光解酶的蓝光受体,存在于细菌、植物、动物和人体内。现己知隐花色素在植物种子萌发中的去黄化作用、光周期诱导开花和调节昼夜节律中均起作用。即隐花色素的激活可以与COPI(光形态建成型蛋白nconstitutive photomorphogenic protein)相互作用, 以调节其自身与HY5(是第一个得到鉴定的HY5 的作用靶位)类似的正向调控能力。HY5积累之后可以促进光形态建成。隐花色素的活性是受磷酸化影响的。 1.2.2向光素 向光素分子量120kD,能够结合黄素单核苷酸(FMN)进行自动磷酸化作用,它介导植物向光性运动、叶绿体移动与气孔开放等反应,在蓝光信号传导反应中它启动生长素载体的运动和诱导Ca2+ 的流动,从而调节植物细胞相关的反应。 1.2.3 UV-B受体 UV-B 受体主要吸收280-320 nm 光, 此受体吸收紫外光有利于保护植物其他代谢反应, 还可以合成花青苷和黄酮类物质, 保护细胞不受伤害.UV-B 或其他波长辐射都能提高植物细胞的响应。当光子被一些受体接收后则产生一种信号, 通过细胞信号途径转导直至细胞的响应部位作出反应。虽然红光或蓝光受体能吸收UV-B这一波长的光量子, 但一些研究指出, UV-B辐射的原初受体既不是光敏色素或隐花色素或受损(DNA受损、ROS产生)。Mackrness 等认为它们虽然不是UV-B 的光受体, 但DNA 受损、ROS的产生或膜损伤都能引起植物响应。 1.2.4 ZTLs( Zeit lupes) 家族 该家族吸收蓝绿光, 该类基因在拟南芥、铁线蕨和粗糙脉胞菌中发现, 但含量较低ZTLS 家族可能是引起生物钟降解反应中的成分。每个基因的突变或是错误表达都能影响昼夜节律, 表明ZTLs家族可能是新型蓝光受体。该类受体有待进一步验证和研究。 2. 钙离子在向光性应信号转导中的作用 Ca2+ 作为细胞内、外信号的重要的第二信使, 在向性运动的信号转导中起了重要的调节作用。用表达钙结合荧光蛋白的转基因拟南芥和烟草观察到, 蓝光可诱导胞质钙瞬时快速升高, 蓝光诱导野生型拟南芥幼苗的胞质钙离子浓度瞬时升高, 而缺失向光素突变phototropin 1 的胞质钙离子浓度无明显变化, phototropin 1 有可能通过胞质钙离子浓度的变化引起进一步的生理反应. 由此看来, Ca2+ 通道介导的胞质Ca2+浓度的波动可能是向光性信号转导的途径之一。 3.向光性运动机理  目前,植物向光性运动机理有两种假说:生长素分布不均匀假说和抑制物质分布不均匀假说。 3.1生长素分布不均匀假说  Cholodny(1927) Went (1928) 以燕麦胚芽鞘为材料研究发现在单侧蓝光作用下,背光侧胚芽鞘顶端扩散到琼脂中的生长刺激物质活性高于向光侧,并认为该物质是生长

文档评论(0)

dsdmlwz1v9 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档