分组密码和流密码.docVIP

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
分组密码与流密码 第一节 什么是分组密码   分组密码是将明文消息编码表示后的数字(简称明文数字)序列,划分成长度为n的组(可看成长度为n的矢量),每组分别在密钥的控制下变换成等长的输出数字(简称密文数字)序列。现代分组密码的研究始于20世纪70年代中期,至今已有20余年历史,这期间人们在这一研究领域已经取得了丰硕的研究成果。大体上,分组密码的研究包括三方面:分组密码的设计原理,分组密码的安全性分析和分组密码的统计性能测试。 ? 第二节 分组密码的设计原则   Claude Shannon在1949年提出了代替—置换(S-P)网络的想法,成为当代分组加密法的基础,而代替和置换就是两种基本的密码学运算。   Shannon又提出扩散(diffusion)和扰乱(confusion)是影响密码安全的主要因素。扩散的目的是让明文中的单个数字影响密文中的多个数字,从而使明文的统计特征在密文中消失,相当于明文的统计结构被扩散。例如,最简单的方法让明文中的一个数字影响密文中的k个数字,可以用:   扰乱是指让密钥与密文的统计信息之间的关系变得复杂,从而增加通过统计方法进行攻击的难度。扰乱可以通过各种代换算法实现。   设计安全的分组加密算法,需要考虑对现有密码分析方法的抵抗,如差分分析、线性分析等,还需要考虑密码安全强度的稳定性。此外,用软件实现的分组加密要保证每个组的长度适合软件编程(如8、16、32……),尽量避免位置换操作,以及使用加法、乘法、移位等处理器提供的标准指令;从硬件实现的角度,加密和解密要在同一个器件上都可以实现,即加密解密硬件实现的相似性。 ? 第三节 Feistel加密结构   如今许多对称式分组密码都是以Horst Feistel提出的“Feistel加密法”的结构为基础。Feistel加密法以不可逆的混合式加密为基础,将输入的区段分为两半,分多个回合来处理,每回合左半部资料会执行一次替换运算,替换运算会将右半部回合函式F的结果,以XOR运算方式与左半部资料结合起来,然后交换左右两半资料。这一思路充分展现了Shannon的SP网络概念。 图3-1 标准Feistel网络 ?   Feistel 加密法的设计通过增大区段提升安全性;增加长度可以提升安全性,使得暴力搜寻密钥变得更困难;增加回合数可以提升安全性;复杂的产生方法可以使分析变困难;复杂的函数可以使分析变困难。但是这些设计都使得加解密都变得缓慢。 图3-2 Feistel加密法的加解密程序 ? 第四节 分组密码算法的要求   分组密码算法实际上就是密钥控制下,通过某个置换来实现对明文分组的加密变换。为了保证密码算法的安全强度,对密码算法的要求如下。 (1)分组长度足够大   当分组长度较小时,分组密码类似于古典的代替密码,它仍然保留了明文的统计信息,这种统计信息将给攻击者留下可乘之机,攻击者可以有效地穷举明文空间,得到密码变换本身。 (2)密钥量足够大   分组密码的密钥所确定密码变换只是所有置换中极小一部分。如果这一部分足够小,攻击者可以有效地穷举明文空间所确定所有的置换。这时,攻击者就可以对密文进行解密,以得到有意义的明文。 (3)密码变换足够复杂   使攻击者除了穷举法以外,找不到其他快捷的破译方法。 ? 第五节 分组密码技术总结   分组密码将定长的明文块转换成等长的密文,这一过程在秘钥的控制之下。使用逆向变换和同一密钥来实现解密。对于当前的许多分组密码,分组大小是 64 位,但这很可能会增加。   明文消息通常要比特定的分组大小长得多,而且使用不同的技术或操作方式。这样的方式示例有:电子编码本(ECB)、密码分组链接(CBC)或密码反馈(CFB)。ECB 使用同一个密钥简单地将每个明文块一个接一个地进行加密;在 CBC 方式中,每个明文块在加密前先与前一密文块进行“异或”运算,从而增加了复杂程度,可以使某些攻击更难以实施。“输出反馈”方式(OFB)类似 CBC 方式,但是进行“异或”的量是独立生成的。CBC 受到广泛使用,例如在 DES(qv)实现中,而且在有关密码术的技术性方面的相应书籍中深入讨论了各种方式。请注意:您自己建立的 密码系统的普遍弱点就是以简单的形式来使用某些公开的算法,而不是以提供了额外保护的特定方式使用。   迭代的分组密码是那些其加密过程有多次循环的密码,因此提高了安全性。在每个循环中,可以通过使用特殊的函数从初始秘钥派生出的子密钥来应用适当的变换。该附加的计算需求必然会影响可以管理加密的速度,因此在安全性需要和执行速度之间存在着一种平衡。天下没有免费的午餐,密码术也是如此;与其它地方一样,应用适当方法的技巧中有一部分是源于对需要进行的权衡以及它们与需求平衡的关系如何的理解。   分组密码包括 DES、IDEA、S

文档评论(0)

mtyi297 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档