图像分割区域生长法.docVIP

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
江苏科技大学 数字图像处理 图像分割——区域生长法专题 1 图像分割简介 图像分割( image segmentation) 就是把图像分成各具特征的区域并提取出感兴趣目标的技术和过程。这里特征可以是象素的灰度、颜色、纹理等, 预先定义的目标可以对应单个区域也可以对应多个区域。图像分割是图像处理到图像分析的关键步骤, 在图像工程中占据重要的位置。一方面, 它是目标表达的基础, 对特征测量有重要的影响。另一方面, 因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式, 使得更高层的图像分析和理解成为可能。 图像分割是一种重要的图像处理技术, 它不仅得到人们的广泛重视和研究, 在实际中也得到大量的应用。图像分割包括目标轮廓、阈值化、图像区分或求差、目标检测、目标识别、目标跟踪等技术。 从大的方面来说,图像分割方法可大致分为基于区域的方法、基于边缘的方法、区域与边缘相结合的方法,以及在此基础上的采用多分辨率图像处理理论的多尺度分割方法 。 基于区域的方法采用某种准则,直接将图像划分为多个区域基于边缘的方法则通过检测包含不同区域的边缘,获得关于各区域的边界轮廓描述,达到图像分割的目的,而区域与边缘相结合的方法通过区域分割与边缘检测的相互作用,得到分割结果。 图像分割中基于区域的方法直方图门限法、区域生长法、基于图像的随机场模型法、松弛标记区域分割法等。区域生长法区域生长是一种古老的图像分割方法,最早的区域生长图像分割方法是由Levine等人提出的。该方法一般有两种方式,一种是先给定图像中要分割的目标物体内的一个小块或者说种子区域,再在种子区域基础上不断将其周围的像素点以一定的规则加入其中,达到最终将代表该物体的所有像素点结合成一个区域的目的;另一种是先将图像分割成很多的一致性较强,如区域内像素灰度值相同的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的,典型的区域生长法如T. C. Pong等人提出的基于小面(facet)模型的区域生长法,区域生长法固有的缺点是往往会造成过度分割,即将图像分割成过多的区域。 借助集合概念对图像分割给出如下较正式的定义: 令集合R 代表整个图像区域, 对R 的分割可看做将R 分成N 个 满足以下五个条件的非空子集( 子区域)R1, R3, ……, RN: ① ②对所有的i 和j, i≠j, 有Ri∩Rj≠○; ③对i=1,2,?,N, 有P(Ri)=TRUE; ④对i≠j, 有P(Ri∪Rj)=FALSE; ⑤对i=1,2,?,N, Ri 是连接的区域。 其中P(Ri)对所有在集合Ri 中元素的逻辑谓词, ○代表空集。上述的五个条件分别称为完备性,独立性,相似性,互斥性,连通性。 3、图像分割方法及串行区域分割技术简述 多年来的研究使得人们对图像分割产生了高度的重视, 并且已经提出了上千种分割算法, 将算法分类就是把一个集合分成若干子集,这与分割本身有一定相似性, 因此参考分割定义, 每个算法都能被分成一类, 各类总和包括所有算法, 同类中算法有相同性质, 不同类算法有某些不同性质。参照这些条件进行分类。 拿一幅普通的人物照片来举例, 相邻象素在象素值方面有两个性质: 不连续性和相似性( 区域内的象素都具有相似性, 如人的额头和面颊的象素, 而区域边界一般具有某种不连续性, 如耳朵的边缘和紧连着耳朵的背景上的象素) 。另外由于分割过程的处理方法不同, 算法又可分为串行和并行的( 串行算法早期的结果被后来的计算所利用, 时间较长, 但抗噪声能力强, 并行算法所有的判断和决定都可独立、同时地完成。所需时间较短) 。 综上两种分类, 图像分割的算法可归入四大类 串行区域分割技术指采用串行处理的策略通过对目标区域的直接检测来实现图像分割的技术, 它的特点是将整个处理过程分解为顺序的多个步骤逐次进行, 对后继步骤的处理要对前面已完成步骤的处理结果进行判断而确定。这里的判定要根据一定的准则, 一般来说如果准则是基于图像灰度特性的, 则这个方法可以用于灰度图像分割。 基于区域的串行分割技术有两种基本的形式, 一是从单个象素出发, 渐渐合并以形成所需的分割区域, 二是从整个图出发, 分裂切割至所需要的分割区域, 第一种方法的典型技术就是区域生长法。 4 区域生长的原理 区域生长的基本思想是将具有相似性质的象素集合起来构成区域。首先对每个需要分割的区域找出一个种子象素作为生长的起点,然后将种子象素周围邻域中与种子有相同或相似性质的象素( 根据事先确定的生长或相似准则来确定) 合并到种子象素所在的区域中。而新的象素继续做种子向四周生长, 直到再没有满足条件的象素可以包括进来, 一个区域就生长而成了。 现在给出一个区域生长的示例。给出已知矩阵A: 大

文档评论(0)

mtyi297 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档