- 1、本文档共42页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
选修1-2《1.1回归分析的基本思想及其初步应用》
例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。 59 43 61 64 54 50 57 48 体重/kg 170 155 165 175 170 157 165 165 身高/cm 8 7 6 5 4 3 2 1 编号 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。 根据最小二乘法估计 和 就是未知参数a和b的最好估计, 制表 7 8 合计 6 5 4 3 2 1 i 所以回归方程是 所以,对于身高为172cm的女大学生,由回归方程可以预报 其体重为 探究P3: 身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗? 例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。 59 43 61 64 54 50 57 48 体重/kg 170 155 165 175 170 157 165 165 身高/cm 8 7 6 5 4 3 2 1 编号 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。 探究P4: 身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗? 答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在60.316kg左右。 60.136kg不是每个身高为172cm的女大学生的体重的预测值,而是所有身高为172cm的女大学生平均体重的预测值。 zxxkw 函数模型与回归模型之间的差别 函数模型: 回归模型: 线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。 在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。 1.用相关系数 r 来衡量 2.公式: 求出线性相关方程后, 说明身高x每增加一个单位,体重y就增加0.849个单位,这表明体重与身高具有正的线性相关关系.如何描述它们之间线性相关关系的强弱呢? ①、当 时,x与y为完全线性相关,它们之间存在确定的函数关系。 ②、当 时,表示x与y存在着一定的线性相关,r的绝对值越大,越接近于1,表示x与y直线相关程度越高,反之越低。 3.性质: 相关关系的测度(相关系数取值及其意义) -1.0 +1.0 0 -0.5 +0.5 完全负相关 无线性相关 完全正相关 负相关程度增加 r 正相关程度增加 对回归模型进行统计检验 思考P6: 如何刻画预报变量(体重)的变化?这个变化在多大程度上 与解析变量(身高)有关?在多大程度上与随机误差有关? 假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。在体重不受任何变量影响的假设下,设8名女大学生的体重都是她们的平均值, 即8个人的体重都为54.5kg。 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 体重/kg 170 155 165 175 170 157 165 165 身高/cm 8 7 6 5 4 3 2 1 编号 54.5kg 在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如此。这就意味着预报变量(体重)的值 受解析变量(身高)和随机误差的影响。 59 43 61 64 54 50 57 48 体重/kg 170 155 165 175 170 157 165 165 身高/cm 8 7 6 5 4 3 2 1 编号 例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为61kg。解析变量(身高)和随机误差共同把这名学生的体重从54.5kg“推”到了61kg,相差6.5kg,所以6.5kg是解析变量和随机误差的组合效应。 编号为3的女大学生的体重并也没有落在水平直线上,她的体重为50kg。解析变量(身高)和随机误差共同把这名学生的体重从54.5kg“推”到了50kg,相差-4.5kg,这时解析变量和随机误差的组合效应为-4.5kg。 54.5kg 用这种方法可以对所有预报变量计算组合效应。 数学上,把每个效应(观测值减去总的平均 值)的平方加起来,即用 表示总的效应,称为总偏差平方和。 在例1中,总偏差平方和为354。 59 43 61 64 54 50 57 48 体重/kg 170 155 165 175 170 157 165 165 身高/cm 8 7 6 5 4 3 2 1 编号 那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身
文档评论(0)