网站大量收购独家精品文档,联系QQ:2885784924

大数据惩罚整合分析方法.docx

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
大数据的惩罚整合分析方法【摘要】:大数据具有数据来源差异性、高维性及稀疏性等特点,如何挖掘数据集间的异质性和共同性并降维去噪是大数据分析的目标与挑战之一。惩罚整合分析(Penalized Integrative Analysis)同时分析多个独立数据集,避免因地域、时间等因素造成的样本差异而引起模型不稳定,是研究大数据差异性的有效方法。它的特点是将每个解释变量在所有数据集中的系数视为一组,通过惩罚函数对系数组进行压缩,研究变量间的关联性并实现降维。本文从同构数据整合分析、异构数据整合分析以及考虑网络结构的整合分析三方面梳理了惩罚整合分析方法的原理、算法和研究现状。统计模拟发现,在弱相关、一般相关和强相关三种情形下,Group Bridge、Group MCP、Composite MCP都表现良好,其中Group Bridge的假阳数最低且最稳定。最后,将Group Bridge整合分析用于农村新农合的家庭医疗支出分析,发现不管在总体还是各个地区,它都比单数据集分析的预测效果更好。关键词:大数据;惩罚整合分析;变量选择;医疗支出中图分类号:F222.3 文献标识码:APenalized Integrative Analysis Approaches for Big DataAbstract:?The difference of data source, high dimensionality and sparsity are the main characteristics of Big Data. How to mining the heterogeneity and association of different datasets and to achieving dimension reduction is one of the goals and challenges of Big data analysis.Integrative analysis provides an effective way of analyzing Big Data. It simultaneously analyzes multiple datasets, avoiding the model instability from individual variations caused by regional and time factor and so on. The coefficients of each covariate across all datasets are treated as a group and use penalty function to shrinkage these groups of coefficients to achieve variable selection. In this paper, we review the existingresearch of penalizedintegrative analysis from three aspects of homogeneity integrative analysis,heterogeneity integrative analysis and network integrative analysis. Three simulations are conducted to verify the performance of integrative analysis, including weak, moderate and strong correlations. It shows that Group Bridge、Group MCP、Composite MCP perform well, while the first has the lowest false positive and ismost stable. Finally, Group Bridge integrative analysis is adopted to analyze the new rural cooperative medical expenditure datasets. The results show that it has better prediction performance than single dataset analysis. Keywords:Big Data; Penalized Integrative Analysis; Variable Selection; Medical Expenditure一、引言21世纪是信

文档评论(0)

kehan123 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档