- 1、本文档共16页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基干支持向量机及粒子群算法腊肉品质等级检测 摘 要:针对近年来备受关注的腊肉酸价和过氧化值超标、褪色、出油、发黏等品质问题,提出一种快速、准确、实用的检测技术。采用支持向量机(support vector machine,SVM)将近红外光谱(near infrared spectroscopy,NIR)检测到的酸价、过氧化值、挥发性盐基氮和显微图像处理得到的微生物菌落总数进行多数据融合,建立腊肉品质等级检测模型,并利用粒子群优化(particle swarm optimization,PSO)算法进行模型优化。结果表明:支持向量机的分类方法取得了与生化方法相同的腊肉分级预测结果,且采用粒子群优化后的分类模型准确率由97.5%提升到100%。证明粒子群优化支持向量机模型能够迅速对腊肉等级进行准确检测
关键词:腊肉品质;近红外光谱;图像处理;支持向量机;粒子群优化算法
Predication of Chinese Bacon Quality Grades Based on Support Vector Machine and Particle Swarm Optimization Algorithm
GUO Peiyuan, LIU Yanfang*, XING Suxia, WANG Xinkun
(School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China)
Abstract: In recent years, quality problems of Chinese bacon such as acid values and peroxide values exceeding the national standard, color fading, oil exudation and sticky feeling to the touch have received growing attention. With that in mind, a fast, accurate and practical detection method to evaluate Chinese bacon quality is presented in this paper. We established a predictive model for bacon quality detection by using the support vector machine (SVM) approach based on the near-infrared spectral data (acid value, peroxide value, volatile base nitrogen) and microscopic image data (the total number of microbial colonies). Moreover, the model was optimized by using particle swarm optimization (PSO) algorithm. It was found that the prediction results of the SVM model and the biochemical method were consisted for bacon quality classification. Besides, the predictive accuracy of the classification mode was increased from 97.5% to 100% after optimization. The SVM model optimized by PSO proved to be able to quickly and accurately detect Chinese bacon quality.
Key words: Chinese bacon quality; near infrared spectroscopy (NIR); image processing; support vector machine (SVM); particle swarm optimization (PSO)
DOI:10.7506/rlyj1001-8123-201703006
中?D分类号:TS251.1 文献标志码:A 文章编号:1001-8123(2017)
您可能关注的文档
- 基于网络调研网络学习者认知负荷优化控制.doc
- 基于网络超声影像学虚拟学习系统设计.doc
- 基于网络高职英语多模态教学模式探究.doc
- 基于美学视角下羌族舞蹈服饰探究.doc
- 基于群体机器人智能仓储系统优化资源分配策略探究.doc
- 基于翻转课堂《概率论及数理统计》教学改革探究.doc
- 基于翻转课堂对外汉语学习平台设计.doc
- 基于翻转课堂民办高校大学英语教学路径探究综述.doc
- 基于翻转课堂教学模式探索Moodle平台下SPOC课程课上活动设计.doc
- 基于耦合协调度模型旅游业及城镇化协调发展实证探析.doc
- 威发国际集团有限公司2023 环境、社会及管治报告.pdf
- 澳亚集团有限公司(境外)环境、社会及管治报告 2023.pdf
- 博汇纸业:2023年环境、社会与治理(ESG)报告.pdf
- 旭辉控股(集团)有限公司二零二三年环境、社会及管治报告.pdf
- 今世缘:2023年环境、社会及治理(ESG)报告.pdf
- 大明国际控股有限公司环境、社会及管治报告 2023.pdf
- 中国三三传媒集团有限公司环境、社会及管治报告 2023.pdf
- 咸亨国际:2023年度环境、社会及公司治理(ESG)报告.pdf
- 吉辉控股有限公司2023环境、社会及管治报告.pdf
- 正荣地产集团有限公司环境、社会及管治报告2023.pdf
文档评论(0)