- 1、本文档共20页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基干高光谱成像技术鸡肉菌落总数快速无损检测
基干高光谱成像技术鸡肉菌落总数快速无损检测 摘 要:以市售新鲜冷藏(4 ℃)鸡胸肉为研究对象,采集鸡胸肉表面的高光谱(400~1 100 nm)图像信息,采用偏最小二乘回归(partial least square regression,PLSR)建立菌落总数预测模型,采用不同预处理方法提高模型的预测准确性和稳健性,实现快速无损检测生鲜鸡胸菌落总数的目的。结果表明:标准变量变换(standard normalized variate,SNV)预处理后,模型性能最佳。模型的校正标准差(standard error of calibration,sEC)和验证标准差(standard error of prediction,sEP)分别为0.40和0.57,sEP/sEC为1.08,校正集相关系数(correlation coefficient of prediction,RC)和验证集相关系数(correlation coefficient of prediction,RP)分别为0.93和0.86;且应用最佳模型可有效预测样品菌落总数的分布地图
关键词:鸡肉;菌落总数;高光谱成像;图像预处理;偏最小二乘法(PLSR);无损检测
Rapid Non-Destructive Detection of Total Bacterial Count in Chicken Using Hyperspectral Imaging
LI Wencai1, LIU Fei1, TIAN Hanyou1, ZOU Hao1, WANG Hui1, ZHANG Zhenqi1, ZHENG Xiaochun2, LI Yongyu2,
LI Jiapeng1, QIAO Xiaoling1,*
(1. Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing 100068, China;
2.College of Engineering, China Agricultural University, Beijing 100083, China)
Abstract: In order to develop a rapid and non-destructive method to predict total bacterial count in chicken breasts by using hyperspectral imaging technology, 83 chicken breast samples refrigerated at 4 ℃ were collected from local supermarket and 63 of these were used as calibration samples. The hyperspectral scattering image of each sample was collected by using hyperspectral imaging system in the wavelength range of 400?1 100 nm. Various algorithm combinations were used to preprocess the hyperspectral information of the samples to enhance the performance of the model developed by using partial least square regression (PLSR) algorithm. Based on the predictive accuracy and stability of the model, the efficiency of different algorithm combinations for spectral preprocessing were evaluated and discussed. The results showed that the optimal model performance was achieved by preprocessing of the hyperspectral information with standard normalized variate. The standard error of calibration (sEC) and standard error of prediction (
文档评论(0)