- 1、本文档共87页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
斜盘式轴向柱塞泵的工作原理 斜轴式轴向柱塞泵的工作原理 二、 变量轴向柱塞泵 变量轴向柱塞泵:主体+变量机构 主体机构特点: 滑履结构 中心弹簧机构 缸体端面间隙的自动补偿 配流盘 变量机构:改变斜盘倾角γ的大小以调节泵的排量 SCY14-1型斜盘式轴向柱塞泵的结构 三、 径向柱塞泵 移动定子以改变偏心距的大小,便可改变柱塞的行程,从而改变排量 第三节 叶片泵 单作用式(变量泵) 双作用式(定量泵) 中低压 工作原理 双作用叶片泵的结构和特点 限压式变量叶片泵 一、单作用式叶片泵(非平衡式) 工作原理 单作用式叶片泵(非平衡式) 工作原理 改变定子和转子间的偏心量e,就可改变泵的排量(变量泵) 转子受有不平衡的径向液压力,且径向不平衡力随泵的工作压力提高而提高,因此这种泵的工作压力不能太高 排量和流量: 流量脉动.理论分析表明,叶片数为奇数时脉动率较小,故一般叶片数为13或15 二、双作用式叶片泵(平衡式) 工作原理 排量和流量: 无流量脉动.理论分析可知,流量脉动率在叶片数为4的整数倍、且大于8时最小。故双作用叶片泵的叶片数通常取为12 双作用叶片泵的结构和特点 定子内曲线:等加速等减速曲线 配流盘:三角槽 叶片的倾角:前倾角 端面间隙:间隙自动补偿措施 高压叶片泵的结构:为了提高压力,必须在结构上采取措施,使吸油区叶片压向定子的作用力减小。 可以采取的措施有多种,一般采用复合叶片结构如双叶片结构和子母叶片结构等 YB1型叶片泵的结构 配流盘 三、限压式变量叶片泵 限压式变量叶片泵的流量改变是利用压力的反馈作用实现的(外反馈和内反馈) 外反馈限压式变量叶片泵的工作原理 限压式变量叶片泵的特性曲线 限压式变量叶片泵的结构 外反馈限压式变量叶片泵的工作原理 pBAkx0 emax qmax pBA=kx0 e=e0-x pA=K(x0+x) e=e0-A(p-pB)/K (p=PB) p? e? q ? 当pc=K(e0+x0)/A, e=0 q=0 限压式变量叶片泵的特性曲线 限定压力pB:泵在保持最大输出流量不变时,可达到的最高压力 极限压力pc:外载进一步加大时泵的工作压力不再升高,这时定子和转子间的偏心量为零,泵的实际输出流量为零 调整: 调整螺钉1可改变原始偏心量e0,即调节泵的最大输出流量, 亦即改变A点的位置,使 AB线段上下平移 调整螺钉4可改变弹簧预压缩量,即调节限定压力pB大小, 亦即改变B点的位置,使BC线段左右平移 改变弹簧刚度k,则可改变BC线段的斜率, 弹簧越“软”(k值越小),BC线段越陡,pc值越小; 反之,弹簧越“硬”(k值越大),BC线段越平坦,pc值越大 第四节 齿轮泵 定量泵(外啮合齿轮泵和内啮合齿轮泵) 齿轮泵没有单独的配流 装置,齿轮的啮合线起 配流作用 一、齿轮泵的工作原理 排量和流量计算 式中:D——分度圆直径,mm; m——模数(m=D/z,z为齿数),mm; B——齿宽,mm; n——转速,r/min; , K——修正系数,一般为1.05~1.15。 瞬时流量脉动,齿数愈少,脉动愈大 齿轮泵的结构 泵工作压力为2.5MPa,属于低压齿轮泵 二、 齿轮泵的特点 困油:封闭容积减小会使被困油液受挤而产生高压,并从缝隙中流出,导致油液发热,轴承等机件也受到附加的不平衡负载作用。封闭容积增大又会造成局部真空,使溶于油中的气体分离出来,产生气穴,引起噪声、振动和气蚀. 消除困油的方法:通常是在两侧端盖上开卸荷槽,且偏向吸油腔 齿轮泵的困油现象及其消除方法 三、 齿轮泵的特点 泄漏: 1.通过齿轮啮合处的间隙; 2.通过泵体内孔和齿顶圆间的径向间隙; 3.通过齿轮两端面和端盖间的端面间隙 结论: 齿轮泵由于泄漏大和存在径向不平衡力,因而限制了压力的提高。为使齿轮泵能在高压下工作,常采取的措施为: 减小径向不平衡力, 提高轴与轴承的刚度, 同时对泄漏量最大的端面间隙采用自动补偿装置 一般油箱液面与大气相通,故p1为大气压力,即p1=pa;v2为泵吸油口的流速,一般可取吸油管流速;v1为油箱液面流速,由于v1v2,故v1可忽略不计;p2为泵吸油口的绝对压力,hw为能量损失。据此,上式可简化成 Pa/γ=P2/γ+h+v22/2g+hw 泵吸油口真空
文档评论(0)