网站大量收购闲置独家精品文档,联系QQ:2885784924

概率统计专题复习.docVIP

  1. 1、本文档共20页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
概率统计专题知识要点1. 概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值. 2. 等可能事件的概率:如果一次试验中可能出现的结果有年n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率. 3. 互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B),推广:. 对立事件:两个事件必有一个发生的互斥事件叫对立事件.注意:i.对立事件的概率和等于1:. ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件. 相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个事件相互独立同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B).推广:若事件相互独立,则. 注意:i. 一般地,如果事件A与B相互独立,那么A 与与B,与也都相互独立. 4. 对任何两个事件都有 知识要点、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: 试验可以在相同的情形下重复进行;试验的所有可能结果是明确可知的,并且不止一个;每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a,b是常数.则也是一个随机变量.一般地,若ξ是随机变量,是连续函数或单调函数,则也是随机变量.也就是说,随机变量的某些函数也是随机变量. 设离散型随机变量ξ可能取的值为: ξ取每一个值的概率,则表称为随机变量ξ的概率分布,简称ξ的分布列. … … P … … 有性质; . 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:即可以取0~5之间的一切数,包括整数、小数、无理数. 3. 二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是:[其中] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作~B(n·p),其中n,p为参数,并记. 二项分布的判断与应用. 二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布. 当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列. 4. 超几何分布:一批产品共有N件,其中有M(M<N)件次品,今抽取件,则其中的次品数ξ是一离散型随机变量,分布列为.〔分子是从M件次品中取k件,从N-M件正品中取n-k件的取法数,如果规定<时,则k的范围可以写为k=0,1,…,n.〕 超几何分布的另一种形式:一批产品由 a件次品、b件正品组成,今抽取n件(1≤n≤a+b),则次品数ξ的分布列为. 超几何分布与二项分布的关系. 设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数的分布列可如下求得:把个产品编号,则抽取n次共有个可能结果,等可能:含个结果,故,即~.[我们先为k个次品选定位置,共种选法;然后每个次品位置有a种选法,每个正品位置有b种选法] 可以证明:当产品总数很大而抽取个数不多时,,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样. 、数学期望与方差. 1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为 … … P … … 则称为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平. 2. 随机变量的数学期望: 当时,,即常数的数学期望就是这个常数本身. 当时,,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和. ξ 0 1 P q p 当时,,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积. 两点分布:,其分布列为:(p + q = 1) 二项分布: 其分布列为~.的概率) ⑸几何分布: 其分布列为~.的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为时,则称为ξ的方差. 显然为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.越小,稳定性越高,波动越小.4.方差的性质. 随机变量的方差.(a、b均为常数) ξ 0 1 P q p 两

文档评论(0)

whhv364 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档