网站大量收购闲置独家精品文档,联系QQ:2885784924

基于Tri_training的半监督SVM.pdf

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于Tri_training的半监督SVM

计算机工程与应用 , ( ) 103 Computer Engineering and Applications 2009 45 22 基于Tri-training 的半监督SVM 李昆仑,张 伟,代运娜 , , LI Kun-lun ZHANG Wei DAI Yun-na 河北大学电子信息工程学院,河北 保定 071002 , , , , College of Electronic and Information Engineering Hebei University Baoding Hebei 071002 China : E-mail wzhanghbu@ , , LI Kun-lun ZHANG Wei DAI Yun-na.Semi-supervised SVM based on Tri-training.Computer Engineering and Applica- , , (): tions 2009 45 22 103-106. : , Abstract One of the main difficulties in machine learning is how to solve large-scale problem effectively and the labeled data are limited and fairly expensive to obtain.In this paper a new semi-supervised SVM is proposed.It applies Tri-training to improve SVM.The semi-supervised SVM uses a few labeled data to train few initial SVM classifiers and makes use of the large number unlabeled data to modify the classifier iteratively.Experiments on UCI dataset show that Tri-training can improve the classification , accuracy of SVM and can increase the difference of classifier the accuracy of final classifier will be higher.Although Tri-training ’ , doesn t put any constraints on the supervised learning algorithm the proposed method uses the SVMs with three different kernel , functions as the supervised learning algorithm.The different kernel can increase the difference of the three SVMs so the performance of

文档评论(0)

jgx3536 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:6111134150000003

1亿VIP精品文档

相关文档