网站大量收购闲置独家精品文档,联系QQ:2885784924

基于目标增量的无等待流水调度快速迭代贪婪算法.doc

基于目标增量的无等待流水调度快速迭代贪婪算法.doc

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于目标增量的无等待流水调度快速迭代贪婪算法 朱夏, 李小平, 王茜 (东南大学计算机科学与工程学院, 南京 210096) (计算机网络和信息集成教育部重点实验室,南京 2100) 摘要: 最小化总完工时间无等待调度是典型的NP-完全问题生产启发式算法两种基本目标增量法快速评估解提出迭代贪婪Iterative Greedy algorithm)求解该问题,构造初始解生成算法,提出分段式重构有哪些信誉好的足球投注网站迭代改进有哪些信誉好的足球投注网站策略进一步提高解的质量。个Benchmark实例将提出的算法与目前该问题好的启发式算法PH1p和元启发式算法进行比较,结果表明在性能优于PH1p,略逊于DPSOvnd;在效率PH1p。 : 无等待流水调度目标增量启发式总完工时间Iterative Greedy Heuristic for No-wait Flowshops with Total Flowtime Minimization Xia Zhu, Xiaoping Li, Qian Wang (School of Computer Science and Engineering, Southeast University, Nanjing, 210096) (Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing,210096) Abstract:?No-wait flowshops with total flowtime minimization are typical NP-Complete combinatorial optimization problems, widely existing in practical manufacturing systems. Different from traditional methods in which objectives are completely computed for a new generated schedule, objective increment methods are presented in this paper. Whether a new schedule is better or worse than the original one is judged just by the objective increment, which can reduce computational time considerably. Objective increment properties are analyzed for fundamental operations of heuristics. Based on the properties, two fundamental methods are introduced for fast evaluating schedules. FIG (Fast Iterative Greedy algorithm) is proposed for the considered problem, which includes initial solution generating and solution improvement phases. Besides an initial solution generating method being constructed, a segment based reconstructive heuristic and an iterative improvement procedure are developed for local and global search respectively to improve the current solution. FIG is compared with PH1p, SRTS and DPSOvnd algorithms on 110 traditional benchmark instances. Computational results show that FIG outperforms SRTS and PH1p but a little worse than DPSOvnd in effectiveness. In efficiency, FIG is better than SRTS and DPSOvnd but a little worse than PH1p

文档评论(0)

DQWvpUSYMv + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档