论文正文-语音信号的基音频率提取算法研究.docVIP

论文正文-语音信号的基音频率提取算法研究.doc

  1. 1、本文档共47页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
语音信号的基音频率提取算法研究 1前言 基音是指发浊音时声带振动所引起的周期性,而声带振动频率的倒数就是基音周期。基音周期具有时变性和准周期性,它的大小与个人声带的长短、厚薄、韧性和发音习惯有关,还与发音者的性别、年龄、发音时的力度及情感有关,是语音信号处理中的重要参数之一,它描述了语音激励源的一个重要特征。基音周期的估计称为基音检测(Pitch Detection),基音检测的最终目标是找出和声带振动频率完全一致的基音周期变化轨迹曲线,如不可能则找出尽量相吻合的轨迹曲线。 然而由于人的声道的易变性及其声道特征的因人而异,而基音周期的范围又很宽,且同一个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,故实际中的基音周期的精确检测是一件比较困难的事情。然而,尽管语音信号的基音检测有许多困难但由于它在语音信号处理中的重要作用,促使广大学者争相涉足该领域,提出了各种各样的基音检测算法。 2选题背景 2.1基音检测技术的研究进展 早在70年代,L.R.R等人就进行了自相关函数法检测语音信号的基音周期的研究工作,它是一种时域上的基音检测算法,算法的精确性高,计算量不大,是目前各种应用中最为常用的基音检测算法。 1967年,A.M.Noll提出用倒谱法(Cepstrum)检测语音信号的基音周期。这是一个频域上的检测算法,这种方法检测基音周期精确度很高,抗噪性能好,主要的缺陷是计算量太大,要用到傅立叶变换和对数运算,不利于实现。 1972 年,J.D等提出简单逆滤波追踪法(SIFT)检测语音信号的基音周期,这是一种时域和频域相结合的算法,是一种精确度和计算量较为折中的算法,它利用逆滤波去除声道共振峰的影响,使基音信息更为突出。 1974 年,M.J.Ross等人提出平均幅度差函数法检测语音信号的基音周期,这是 一种时域上的算法,也是最简单的基音检测算法,它只需在时域上进行简单的加减和少量的除法运算,运算量很小,但是很容易产生半基音和倍基音,目前还有很多人在不断的提出改进的AMDF算法。 到1976年,L.R.R等人系统总结了之前的各种语音信号的基音检测算法,并进行了全面的比较。这些算法都是假定语音信号在一帧内是平稳的且一帧内包含两个以上的基音周期,所以它们不能很好反映语音信号的时变特性,而且只能求出一帧内的平均周期。 1992年,S.K等人最早提出了基于小波变换的基音检测算法,它是一种利用变换的基音检测算法,通过小波变换后的幅度和相邻两个尺度下的小波变换的局部最大值是否一致来进行清浊音判断,浊音的小波变换的局部最大值点即为GO,而相邻两个GO的距离即为语音信号的基音周期。受小波变换的基音检测算法的启发,不断地有人提出了各种改进的小波变换基音检测算法,如:小波变换偏移补偿的基音检测算法,利用小波变换和其它方法结合的基音检测算等。 2.2基音检测技术的研究现状 从国内外研究现状来看,基音检测技术的研究热点和难点已经集中于处理低信噪比语音。着眼于基音的检测方法,主要有以下三个方面的研究:(1)稳定并提取准周期性信号的周期性方法;(2)因周期混乱,采取基音提取误差补偿的方法;(3)消除声道噪声影响的方法。人们从语音信号的时域特性、频域和时一频混合特性三个方面出发,已经开发了许多基音检测方法,这些方法中的一些方案已经得到了应用。基音检测方法大致上可以分为三类:(1)时域估计法,直接由波形来估计基音周期,常见的有:自相关(ACF)法[31]、平均幅度差法[32]等;(2)频域估计法,利用同态分析方法将声道的影响消除,得到属于激励部分的信息,然后求取基音周期,常见的有:谐波积谱(HPS)法,简化逆滤波(SIFT)法[33],倒谱(cepstrum)法[34]等;(3)混合法,基于以上方法的衍生组合算法,如:自相关法和平均幅度差法相结合。这些方法在实验室特定条件下都取得了不错的效果。 表1列出了几种典型的基音检测方法及特征[30] 表 1几种典型的基音检测方法及特征 分类 基音提取法 特征 波形估计法 并行处理法 由多种简单的波形峰值检测器决定提取的多数基因周期。 数据减少法 根据各种理论操作,从波形去掉修正基音脉冲以外的数据。 过零数法 关于波形的过零数,着眼于重复图形 相关处理法 自相关法 语音波形的自相关函数,根据中心削波,平坦处理频谱,采用峰值削波可以简化运算。 SIFT法 语音信号波形降低取样后,进行LPC分析,用逆滤波器平坦处理频谱,通过预测误差的自相关函数,恢复时间精度。 AMDF法 采用平均幅度差函数检测周期性,根据预测误差信号的AMDF也可以进行提取。 变换法 倒谱法 根据对数功率谱的傅里叶逆变换,分离频谱包络和细微结构。 循环直方图法 在频

文档评论(0)

jkf4rty7 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档