选修2第二章正态分布和线性回归讲义.docVIP

选修2第二章正态分布和线性回归讲义.doc

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
一、【内容讲解】  ,(σ>0,-∞<x<∞) 其中π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差.正态分布一般记为 2.正态分布)是由均值μ和标准差σ唯一决定的分布 3.正态曲线的性质:正态分布由参数μ、σ唯一确定,如果随机变量~N(μ,σ2),根据定义有:μ=E,σ=D。 正态曲线具有以下性质: (1)曲线在x轴的上方,与x轴不相交。 (2)曲线关于直线x =μ对称。 (3)曲线在x =μ时位于最高点。 (4)当x μ时,曲线上升;当x μ时,曲线下降。并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近。 (5)当μ一定时,曲线的形状由σ确定。σ越大,曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中。 五条性质中前三条较易掌握,后两条较难理解,因此应运用数形结合的原则,采用对比教学 4.标准正态曲线:当μ=0、σ=l时,正态总体称为标准正态总体,其相应的函数表示式是,(-∞<x<+∞) 其相应的曲线称为标准正态曲线 标准正态总体N(0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题 5.标准正态总体的概率问题: 对于标准正态总体N(0,1),是总体取值小于的概率, 即 , 其中,图中阴影部分的面积表示为概率 只要有标准正态分布表即可查表解决.从图中不难发现:当时,;而当时,Φ(0)=0.5 6.标准正态分布表 标准正态总体在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于的值是指总体取值小于的概率,即 ,. 若,则. 利用标准正态分布表,可以求出标准正态总体在任意区间内取值的概率,即直线,与正态曲线、x轴所围成的曲边梯形的面积. 7.非标准正态总体在某区间内取值的概率:可以通过转化成标准正态总体,然后查标准正态分布表即可 在这里重点掌握如何转化 首先要掌握正态总体的均值和标准差,然后进行相应的转化 8.小概率事件的含义:发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生 假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析 假设检验方法的操作程序,即“三步曲” 一是提出统计假设,教科书中的统计假设总体是正态总体; 二是确定一次试验中的a值是否落入(μ-3σ,μ+3σ); 三是作出判断 9.相关关系:当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系 相关关系与函数关系的异同点如下: 相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系. 10.回归分析一元线性回归分析: 对具有相关关系的两个变量进行统计分析的方法叫做回归分析 通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性      1)回归分析是对具有相关关系的两个变量进行统计分析的方法。两个变量具有相关关系是回归分析的前提。   2)散点图是定义在具有相关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析。 (3)求回归直线方程,首先应注意到,只有在散点图大至呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义。 11.散点图:表示具有相关关系的两个变量的一组数据的图形叫做散点图.散点图形象地反映了各对数据的密切程度 粗略地看,散点分布具有一定的规律 12. 回归直线 设所求的直线方程为,其中a、b是待定系数. , , 相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析 13.相关系数:相关系数是因果统计学家皮尔逊提出的,对于变量y与x的一组观测值,把 = 叫做变量y与x之间的样本相关系数,简称相关系数,用它来衡量两个变量之间的线性相关程度. 14.相关系数的性质: ≤1,且越接近1,相关程度越大;且越接近0,相关程度越小. 15.显著性水平:显著性水平是统计假设检验中的一个概念,它是公认的小概率事件的概率值 它必须在每一次统计检验之前确定 16. 显著性检验:(相关系数检验的步骤)由显著性水平和自由度查表得出临界值,显著性水平一般取0.01和0.05,自由度为n-2,其中n是数据的个数 在“相关系数检验的临界值表”查出与显著性水平0.05或0.01及自由度n-2(n为观测值组数)相应的相关数临界值r0 05或r0 01;例如n=7时,r

文档评论(0)

jkf4rty7 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档