实体关系提取解析.pdf

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Winnow SVM2004 ACE Automatic Content Extraction Winnow SVM F-Score 73.08% 73.27% ACE TP391 A Automatic Entity Relation Extraction Wanxiang Che, Ting Liu, Sheng Li (School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001) Abstract: Entity Relation Extraction is an important research field in Information Extraction. Two kinds of machine learning algorithms, Winnow and Support Vector Machine (SVM), were used to extract entity relation from the training data of ACE (Automatic Content Extraction) Evaluation 2004 automatically. Both of the algorithms need appropriate feature selection. When two words around an entity were selected, the performance of the both algorithms got the peak. The average weighted F-Score of Winnow and SVM algorithms were 73.08% and 73.27% respectively. We can conclude that when the same feature set is used, the performance of different machine learning algorithms get little difference. So we should pay more attention to find better features when we use the automatic learning methods to extract the entity relation. Key words: entity relation extraction; ACE evaluation; feature selection; Information Extraction Entity TIME ORG PER WEAPON PHYS EMP-ORG PER ORG EMP-ORG

文档评论(0)

xiaofei2001128 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档