算法设计技巧论述.docVIP

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
算法设计技巧论述 前言 在上世纪60年代初期,最初的电子计算机用户开始注意程序的执行性能,从那个时候起,算法在计算机领域就很活跃了。在那个年代,计算机的有限资源也促进了有效算法的设计。在这个领域中进行了广泛的研究以后,出现了大量解决不同问题的有效算法。属于一定问题类的不同问题之间的相似性产生了一般算法设计的技术。算法的表现方式是直截了当的,并且使用与结构化程序设计语言的语法相类似的伪代码。在需要时伪代码中混有说明性文字,用说明性文字描述算法的一部分当然是有益的,它可以使读者花费最少的功夫来了解算法思想。但是有时候用伪代码会使算法变得更容易和形式化。本文讨论算法设计技巧,包括贪婪算法、分治算法、随机化算法以及回溯算法。 贪婪算法 2.1基本概念 贪婪算法通常用来于求解最优化问题,即量的最大化或最小化。它通常包含一个用以寻找局部最优解的迭代过程。在某些实例中,这些局部最优解转变成全局最优解,而在另外一些情况下,则无法找到最优解。贪心算法在少量计算的基础上做出正确猜想而不急于考虑以后的情况,这样,它一步步地来构筑解,每一步均是建立在局部最优解的基础上,而每一步又都扩大了部分解的规模,做出的选择产生最大的直接收益而又保持可行性。设计贪婪算法的困难部分就是要证明该算法确实是求解了它所要解决的问题 2.2基本思路 1.建立数学模型来描述问题。 2.把求解的问题分成若干个子问题。 3.对每一子问题求解,得到子问题的局部最优解。 4.把子问题的解局部最优解合成原来解问题的一个解。 2.3实现框架 从问题的某一初始解出发 While { 利用可行的策略,求出可行解的一个解元素; } 由所有解元素组合成问题的一个可行解; 2.4应用实例 给定带权有向图G=(V,E),其中每条边的权是非负数。另外,还给定V中的一个顶点,称为源。现在要计算从源到所有其他各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。 Dijkstra算法是解单源最短路径问题的贪心算法。 其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。 初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。 例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。 Dijkstra算法的迭代过程: dist[i]表示当前找到的从源点V0到终点Vi的最短路径长度。 对于具有n个顶点和e条边的带权有向图,如果用带权邻接矩阵表示这个图,那么Dijkstra算法的主循环体需要O(n)时间。这个循环需要执行n-1次,所以完成循环需要O(n)时间。算法的其余部分所需要时间不超过O(n^2)。 分治算法 3.1基本概念 在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)…… 任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。 3.2基本思想及策略 ?分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。 分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。 如果原问题可分割成k个子问题,1k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治

文档评论(0)

xDpBSTopzX + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档