- 1、本文档共12页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于趋势预测模型的多目标分布估计算法.pdf
Artificial Intelligence and Robotics Research 浜哄伐鏅鸿兘涓庢満鍣ㄤ汉鐮旂┒, 2016, 5(1), 1-12
Published Online February 2016 in Hans. /journal/airr
/10.12677/airr.2016.51001
Trend Prediction Model Based
Multi-Objective Estimation of Distribution
Algorithm
Zhongqiang Huang, Min Jiang
Fujian Key Lab of the Brain-Like Intelligent Systems, Xiamen University (XMU), Xiamen Fujian
th th th
Received: Mar. 11 , 2016; accepted: Mar. 26 , 2016; published: Mar. 30 , 2016
Copyright 漏 2016 by authors and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
/licenses/by/4.0/
Abstract
Multi-objective optimization problems exist widely in real world applications. Traditional evolu-
tionary algorithms usually employ individual-based evolution strategies to solve these optimiza-
tion problems, leading to low convergence rate, strong dependency on population size and poor
results. As a meta-heuristic algorithm, the Estimation of Distribution Algorithm (EDA) combines
the statistical machine learning with population evolution model and has attracted a wide spread
attention. In this paper, we proposed a trend-prediction-model (TPM) based EDA method, called
TPM-EDA, to solve multi-objective problems. The characteristic of TPM is that it effectively utilizes
the historic information generated in evolutionary process to predict the trend of particles, so as
to promote the search speed for finding Pareto-optimal front and the search ability of algorithm.
Meanwhile, the sparseness is applied in our algorithm to control the sampling frequencies of indi-
viduals for the purpose of achieving the diversity of population. We compared our method with
文档评论(0)