粗糙集理论论文.docx

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
粗糙集理论论文

粗糙集理论浅析 粗糙集理论,是继概率论、模糊集、证据理论之后的又一个处理不确定性的数学工具。作为一种较新的软计算方法,粗糙集近年来越来越受到重视,其有效性已在许多科学与工程领域的成功应用中得到证实,是当前国际上人工智能理论及其应用领域中的研究热点之一。在很多实际系统中均不同程度地存在着不确定性因素,采集到的数据常常包含着噪声,不精确甚至不完整?。 引言 粗糙集作为一种处理不精确、不确定与不完全数据的新的数学理论, 最初是由波兰数学家Z. Paw lak于1982年提出的。由于最初关于粗糙集理论的研究大部分是用波兰语发表的, 因此当时没有引起国际计算机学界和数学界的重视, 研究地域也仅局限在东欧一些国家, 直到20世纪80年代末才逐渐引起各国学者的注意。近几年来, 由于它在机器学习与知识发现、数据挖掘、决策支持与分析等方面的广泛应用, 研究逐渐趋热。1992年, 第一届关于粗糙集理论国际学术会议在波兰召开。1995年,A CM Com 2m unication 将其列为新浮现的计算机科学的研究课题。1998年, 国际信息科学杂志( Infor2m ation Sciences) 还为粗糙集理论的研究出了一期专辑。 粗糙集理论是建立在分类机制的基础上的, 它将分类理解为在特定空间上的等价关系, 而等价关系构成了对该空间的划分。粗糙集理论将知识理解为对数据的划分, 每一被划分的集合称为概念。粗糙集理论的主要思想是利用已知的知识库, 将不精确或不确定的知识用已知的知识库中的知识来(近似) 刻画。该理论与其他处理不确定和不精确问题理论的最显著的区别是它无需提供问题所需处理的数据集合之外的任何先验信息, 所以对问题的不确定性的描述或处理可以说是比较客观的, 由于这个理论未能包含处理不精确或不确定原始数据的机制, 所以这个理论与概率论, 模糊数学和证据理论等其他处理不确 定或不精确问题的理论有很强的互补性。 基本概念 粗糙集是一种较有前途的处理不确定性的方法,相信今后将会在更多的领域中得到应用. 但是,粗糙集理论还处在继续发展之中,正如粗糙集理论的创立人Z. Paw lak 所指出的那样,尚有一些理论上的问题需要解决,诸如用于不精确推理的粗糙逻辑(Rough logic) 方法,粗糙集理论与非标准分析(Nonstandard analysis) 和非参数化统计(Nonparametric statistics)等之间的关系等等. 将粗糙集与其它软计算方法(如模糊集,人工神经网络,遗传算法等) 相综合,发挥出各自的优点,可望设计出具有较高的机器智商(M IQ) 的混合智能系统(Hybrid Intelligent System),这是一个值得努力的方向。 粗糙集理论中的知识表示 “知识”这个概念在不同的范畴内有多种不同的含义。在粗糙集理论中,“知识”被认为是一种分类能力。人们的行为是基于分辨现实的或抽象的对象的能力,如在远古时代,人们为了生存必须能分辨出什么可以食用,什么不可以食用;医生给病人诊断,必须辨别出患者得的是哪一种病。这些根据事物的特征差别将其分门别类的能力均可以看作是某种“知识”。 不可分辨关系与基本集 分类过程中,相差不大的个体被归于同一类,它们的关系就是不可分辨关系(indiscernibility relation). 假定只用两种黑白颜色把空间中的物体分割两类,{黑色物体},{白色物体},那么同为黑色的两个物体就是不可分辨的,因为描述它们特征属性的信息相同,都是黑色. 如果再引入方,圆的属性,又可以将物体进一步分割为四类: {黑色方物体},{黑色圆物体},{白色方物体},{白色圆物体}. 这时,如果两个同为黑色方物体,则它们还是不可分辨的. 不可分辨关系是一种等效关系(equivalence relationship),两个白色圆物体间的不可分辨关系可以理解为它们在白,圆两种属性下存在等效关系. 基本集(elementary set) 定义为由论域中相互间不可分辨的对象组成的集合,是组成论域知识的颗粒. 不可分辨关系这一概念在粗糙集理论中十分重要,它深刻地揭示出知识的颗粒状结构,是定义其它概念的基础. 知识可认为是一族 等效关系,它将论域分割成一系列的等效类. 粗糙集的计算方法 软计算(sof t compu t ing) 的概念是由模糊集创始人Zadeh[ 9 ]提出的. 软计算中的主要工具包括粗糙集,模糊逻辑(FL),神经网络(NN),概率推理(PR),信度网络(Belief Networks),遗 传算法(GA) 与其它进化优化算法,混沌(Chaos) 理论等. 传统的计算方法即所谓的硬计算(hard computing),使用精确,固定和不变的算法来表达和解决问题. 而软计算的指导原则是利用所允许的不精确性,不确定

文档评论(0)

ds2fdsx + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档