网站大量收购独家精品文档,联系QQ:2885784924

Computing semantic relatedness using Wikipedia-based explicit semantic analysis-英文文献.pdf

Computing semantic relatedness using Wikipedia-based explicit semantic analysis-英文文献.pdf

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Computing semantic relatedness using Wikipedia-based explicit semantic analysis-英文文献

Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis Evgeniy Gabrilovich and Shaul Markovitch Department of Computer Science Technion—Israel Institute of Technology, 32000 Haifa, Israel {gabr,shaulm}@cs.technion.ac.il Abstract We propose a novel method, called Explicit Semantic Analysis (ESA), for fine-grained semantic representation of Computing semantic relatedness of natural lan- unrestricted natural language texts. Our method represents guage texts requires access to vast amounts of meaning in a high-dimensional space of natural concepts de- common-sense and domain-specific world knowl- rived from Wikipedia (), the edge. We propose Explicit Semantic Analysis largest encyclopedia in existence. We employ text classi- (ESA), a novel method that represents the mean- fication techniques that allow us to explicitly represent the ing of texts in a high-dimensional space of concepts meaning of any text in terms of Wikipedia-based concepts. derived from Wikipedia. We use machine learning We evaluate the effectiveness of our method on automatically techniques to explicitly represent the meaning of computing the degree of semantic relatedness be

文档评论(0)

wnqwwy20 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7014141164000003

1亿VIP精品文档

相关文档