网站大量收购独家精品文档,联系QQ:2885784924

Evolving Neural Networks through Augmenting Topologies-英文文献.pdf

Evolving Neural Networks through Augmenting Topologies-英文文献.pdf

  1. 1、本文档共29页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Evolving Neural Networks through Augmenting Topologies-英文文献

Evolving Neural Networks through Augmenting Topologies Kenneth O. Stanley kstanley@cs.utexas.edu Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712, USA Risto Miikkulainen risto@cs.utexas.edu Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712, USA Abstract An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolu- tion of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of differ- ent topologies, (2) protecting structural innovation using speciation, and (3) incremen- tally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an im- portant contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution. Keywords Genetic algorithms, neural networks, neuroevolution, network topologies, speciation, competing conventions. 1 Introduction Neuroevolution (NE), the artificial evolution of neural networks using genetic algo- rithms, has shown great promise in complex reinforcement learning tasks (Gomez and Miikkulainen, 1999; Gruau et al., 1996; Moriarty and Miikkulainen, 1997; Po

您可能关注的文档

文档评论(0)

wnqwwy20 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7014141164000003

1亿VIP精品文档

相关文档