- 1、本文档共29页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Evolving Neural Networks through Augmenting Topologies-英文文献
Evolving Neural Networks through
Augmenting Topologies
Kenneth O. Stanley kstanley@cs.utexas.edu
Department of Computer Sciences, The University of Texas at Austin, Austin, TX
78712, USA
Risto Miikkulainen risto@cs.utexas.edu
Department of Computer Sciences, The University of Texas at Austin, Austin, TX
78712, USA
Abstract
An important question in neuroevolution is how to gain an advantage from evolving
neural network topologies along with weights. We present a method, NeuroEvolu-
tion of Augmenting Topologies (NEAT), which outperforms the best fixed-topology
method on a challenging benchmark reinforcement learning task. We claim that the
increased efficiency is due to (1) employing a principled method of crossover of differ-
ent topologies, (2) protecting structural innovation using speciation, and (3) incremen-
tally growing from minimal structure. We test this claim through a series of ablation
studies that demonstrate that each component is necessary to the system as a whole
and to each other. What results is significantly faster learning. NEAT is also an im-
portant contribution to GAs because it shows how it is possible for evolution to both
optimize and complexify solutions simultaneously, offering the possibility of evolving
increasingly complex solutions over generations, and strengthening the analogy with
biological evolution.
Keywords
Genetic algorithms, neural networks, neuroevolution, network topologies, speciation,
competing conventions.
1 Introduction
Neuroevolution (NE), the artificial evolution of neural networks using genetic algo-
rithms, has shown great promise in complex reinforcement learning tasks (Gomez and
Miikkulainen, 1999; Gruau et al., 1996; Moriarty and Miikkulainen, 1997; Po
您可能关注的文档
- Closed-form solution of absolute orientation using unit quaternions-英文文献.pdf
- Comparing Images Using the Hausdorff Distance-英文文献.pdf
- Community detection in graphs-英文文献.pdf
- Comparison of Broadcasting Techniques for Mobile Ad Hoc Networks-英文文献.pdf
- Comparison of discrimination methods for the classification of tumors using gene expression data-英文文献.pdf
- Composable memory transactions-英文文献.pdf
- Compressive sampling-英文文献.pdf
- Computational Lambda-Calculus and Monads-英文文献.pdf
- Computer Vision-英文文献.pdf
- Computing semantic relatedness using Wikipedia-based explicit semantic analysis-英文文献.pdf
- 2025年广东省吴川市事业单位考试职业能力倾向测验(中小学教师类D类)强化训练题库汇编.docx
- 2025年浙江省兰溪市职业能力倾向测验事业单位考试(中小学教师类D类)试题带答案.docx
- 2025年云南省开远市事业单位考试(中小学教师类D类)职业能力倾向测验知识点试题带答案.docx
- 2025年江苏省昆山市职业能力倾向测验事业单位考试(中小学教师类D类)试题必威体育精装版.docx
- 2025年吉林省珲春市事业单位考试(中小学教师类D类)职业能力倾向测验试卷含答案.docx
- 2025年消防安全知识培训考试题库:实操应用篇火灾隐患排查试题.docx
- 2025年云南省蒙自市事业单位公开招聘考试职业能力倾向测验(D类)(中小学教师类)真题含答案.docx
- 2025年注册会计师考试《会计》新准则解读模拟试题精选.docx
- 2025年物业管理师职业能力测试卷:住宅小区物业服务项目管理试题.docx
- 2025年山东省肥城市事业单位考试(中小学教师类D类)职业能力倾向测验试卷汇编.docx
文档评论(0)