网站大量收购独家精品文档,联系QQ:2885784924

Fast Effective Rule Induction-英文文献.pdf

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Fast Effective Rule Induction-英文文献

From Machine Learning Pro ceedings of the Twelfth International Conference ML Fast Eective Rule Induction William W Cohen ATT Bell Laboratories Mountain Avenue Murray Hill NJ wcohenresearchattcom Abstract this problem is of critical importance The goal of this paper is to develop propositional rule learning algo Many existing rule learning systems are rithmsthat perform eciently on large noisy datasets computationally expensive on large noisy that extend naturally to rstorder representations datasets In this paper we evaluate the andthatarecompetitiveingeneralizationperformance recentlyproposed rule learning algorithm with more mature symbolic learning methods such IREP on a large and diverse collection of as decision trees The end product of this eort is benchmark problems We show that while the algorithm RIPPERk which is competitive with IREP is extremely ecient it frequently Crules with respect to error rates scales nearly lin gives error rates higher than those of C early with the number of training examples and can and Crules We then propose a num eciently process noisy datasets containing hundreds ber of modications resulting in an algo of thousands of examples rithm RIPPERk that is very competitive with Crules with respect to error rates PREVIOUS WORK but much more ecient on large samples RIPPERk obtains error rates lower than or equivalent to Crules on of bench COMPLEXITY OF RULE P

您可能关注的文档

文档评论(0)

wnqwwy20 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7014141164000003

1亿VIP精品文档

相关文档