网站大量收购独家精品文档,联系QQ:2885784924

Inducing Features of Random Fields-英文文献.pdf

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Inducing Features of Random Fields-英文文献

IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 4, APRIL 1997 1 Inducing Features of Random Fields Stephen Della Pietra, Vincent Della Pietra, and John Lafferty, Member, IEEE Abstract—We present a technique for constructing random fields from a the same string without a lowercase letter in that position. The set of training samples. The learning paradigm builds increasingly complex following collection of strings was generated from the resulting fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained field by Gibbs sampling. (As for all of the examples that will be by minimizing the Kullback-Leibler divergence between the model and the shown, this sample was generated with annealing, to concentrate empirical distribution of the training data. A greedy algorithm determines the distribution on the more probable strings.) how features are incrementally added to the field and an iterative scaling algorithm is used to estimate the optimal values of the weights. m, r, xevo, ijjiir, b, to, jz, gsr, wq, vf, x, ga, The random field models and techniques introduced in this paper differ msmGh, pcp, d, oziVlal, hzagh, yzop, io, advzmxnv, from those common to much of the computer vision literature in that the ijv_bolft, x, emx, kayerf, mlj, rawzyb, jp, ag, underlying random fields are non-Markovian and have a large number of ctdnnnbg, wgdw, t, kguv, cy, spxcq, uzflbbf, parameters that must be estimated. Relations to other learning approaches, dxtkkn, cxwx, jpd, ztzh, lv, zhpkvnu, lˆ, r, qee, including decision trees, are given. As a demonstration of the method, we nynrx, atze4n, ik, se, w, lrh, hp+, yrqyka’h, describe its appli

您可能关注的文档

文档评论(0)

wnqwwy20 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7014141164000003

1亿VIP精品文档

相关文档