- 1、本文档共13页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Inducing Features of Random Fields-英文文献
IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 4, APRIL 1997 1
Inducing Features of Random Fields
Stephen Della Pietra, Vincent Della Pietra, and John Lafferty, Member, IEEE
Abstract—We present a technique for constructing random fields from a the same string without a lowercase letter in that position. The
set of training samples. The learning paradigm builds increasingly complex following collection of strings was generated from the resulting
fields by allowing potential functions, or features, that are supported by
increasingly large subgraphs. Each feature has a weight that is trained field by Gibbs sampling. (As for all of the examples that will be
by minimizing the Kullback-Leibler divergence between the model and the shown, this sample was generated with annealing, to concentrate
empirical distribution of the training data. A greedy algorithm determines the distribution on the more probable strings.)
how features are incrementally added to the field and an iterative scaling
algorithm is used to estimate the optimal values of the weights. m, r, xevo, ijjiir, b, to, jz, gsr, wq, vf, x, ga,
The random field models and techniques introduced in this paper differ msmGh, pcp, d, oziVlal, hzagh, yzop, io, advzmxnv,
from those common to much of the computer vision literature in that the ijv_bolft, x, emx, kayerf, mlj, rawzyb, jp, ag,
underlying random fields are non-Markovian and have a large number of ctdnnnbg, wgdw, t, kguv, cy, spxcq, uzflbbf,
parameters that must be estimated. Relations to other learning approaches, dxtkkn, cxwx, jpd, ztzh, lv, zhpkvnu, lˆ, r, qee,
including decision trees, are given. As a demonstration of the method, we nynrx, atze4n, ik, se, w, lrh, hp+, yrqyka’h,
describe its appli
您可能关注的文档
- Face Recognition Based on Fitting a 3D Morphable Model-英文文献.pdf
- Factoring wavelet transforms into lifting steps-英文文献.pdf
- Fast Algorithms for Mining Association Rules-英文文献.pdf
- Fast and accurate short read alignment with Burrows-Wheeler transform-英文文献.pdf
- Fast Effective Rule Induction-英文文献.pdf
- Fast Parallel Algorithms for Short-Range Molecular Dynamics-英文文献.pdf
- Facial expression and emotion-英文文献.pdf
- Factoring polynomials with rational coefficients-英文文献.pdf
- Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network-英文文献.pdf
- Fast Planning Through Planning Graph Analysis-英文文献.pdf
- 2025年广西中考地理二轮复习:专题四+人地协调观+课件.pptx
- 2025年广西中考地理二轮复习:专题三+综合思维+课件.pptx
- 2025年中考地理一轮教材梳理:第4讲+天气与气候.pptx
- 第5讲+世界的居民课件+2025年中考地理一轮教材梳理(商务星球版).pptx
- 冀教版一年级上册数学精品教学课件 第1单元 熟悉的数与加减法 1.1.6 认识1-9 第6课时 合与分.ppt
- 2025年中考一轮道德与法治复习课件:坚持宪法至上.pptx
- 2025年河北省中考一轮道德与法治复习课件:崇尚法治精神.pptx
- 八年级下册第二单元+理解权利义务+课件-2025年吉林省中考道德与法治一轮复习.pptx
- 精品解析:湖南省娄底市2019-2020学年八年级(上)期中考试物理试题(原卷版).doc
- 2025年中考地理一轮教材梳理:第10讲+中国的疆域与人口.pptx
文档评论(0)