相关性方法选读.doc

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数据相关性分析方法 一般方法: 梁志平在其《多变量时间序列相关性分析及建模预测研究》中提到几种方法。 陈晓红在其博士论文《数据降维的广义相关分析研究》中总结了一下几种方法:PCA主成分分析、LDA线性判别分析、LPP局部保持投影、CCA典型相关分析、PLS偏最小二乘回归等。 另严华生在《CCA与SVD分析方法比较研究》中对这两种常用方法进行了比较。 结合所读其他文献,主要对CCA、PLS进行介绍。 另有林和平及其研究生说研究的的灰色相关分析方法可在其文章中有所了解。 1、CCA典型相关分析 (canonical correlation analysis)利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。? Canonical Correlation Analysis典范相关分析/Canonical Correspondence Analysis典范对应分析 ?简单相关系数描述两组变量的相关关系的缺点:只是孤立考虑单个X与单个Y间的相关,没有考虑X、Y变量组内部各变量间的相关。两组间有许多简单相关系数,使问题显得复杂,难以从整体描述。典型相关是简单相关、多重相关的推广。典型相关是研究两组变量之间相关性的一种统计分析方法。也是一种降维技术。 1936年,Hotelling提出典型相关分析。考虑两组变量的线性组合, 并研究它们之间的相关系数p(u,v).在所有的线性组合中, 找一对相关系数最大的线性组合, 用这个组合的单相关系数来表示两组变量的相关性, 叫做两组变量的典型相关系数, 而这两个线性组合叫做一对典型变量。在两组多变量的情形下, 需要用若干对典型变量才能完全反映出它们之间的相关性。下一步, 再在两组变量的与u1,v1不相关的线性组合中, 找一对相关系数最大的线性组合, 它就是第二对典型变量, 而且p(u2,v2)就是第二个典型相关系数。这样下去, 可以得到若干对典型变量, 从而提取出两组变量间的全部信息。 典型相关分析的实质就是在两组随机变量中选取若干个有代表性的综合指标(变量的线性组合), 用这些指标的相关关系来表示原来的两组变量的相关关系。这在两组变量的相关性分析中, 可以起到合理的简化变量的作用; 当典型相关系数足够大时, 可以像回归分析那样, 由- 组变量的数值预测另一组变量的线性组合的数值。 CCA表示与求解 给定两组向量和(替换之前的x为,y为),维度为,维度为,默认。形式化表示如下: 是x的协方差矩阵;左上角是自己的协方差矩阵;右上角是;左下角是,也是的转置;右下角是的协方差矩阵。 2、偏最小二乘回归 偏最小二乘回归是一种新型的多元统计数据分析方法,它与1983年由伍德和阿巴诺等人首次提出。近十年来,它在理论、方法和应用方面都得到了迅速的发展。密西根大学的弗耐尔教授称偏最小二乘回归为第二代回归分析方法。 偏最小二乘回归方法在统计应用中的重要性主要的有以下几个方面: (1)偏最小二乘回归是一种多因变量对多自变量的回归建模方法。 (2)偏最小二乘回归可以较好地解决许多以往用普通多元回归无法解决的问题。在普通多元线形回归的应用中,我们常受到许多限制。最典型的问题就是自变量之间的多重相关性。如果采用普通的最小二乘方法,这种变量多重相关性就会严重危害参数估计,扩大模型误差,并破坏模型的稳定性。变量多重相关问题十分复杂,长期以来在理论和方法上都未给出满意的答案,这一直困扰着从事实际系统分析的工作人员。在偏最小二乘回归中开辟了一种有效的技术途径,它利用对系统中的数据信息进行分解和筛选的方式,提取对因变量的解释性最强的综合变量,辨识系统中的信息与噪声,从而更好地克服变量多重相关性在系统建模中的不良作用。 (3)偏最小二乘回归之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 偏最小二乘回归=多元线性回归分析+典型相关分析+主成分分析 由于偏最小二乘回归在建模的同时实现了数据结构的简化,因此,可以在二维平面图上对多维数据的特性进行观察,这使得偏最小二乘回归分析的图形功能十分强大。在一次偏最小二乘回归分析计算后,不但可以得到多因变量对多自变量的回归模型,而且可以在平面图上直接观察两组变量之间的相关关系,以及观察样本点间的相似性结构。这种高维数据多个层面的可视见性,可以使数据系统的分析内容更加丰富,同时又可以对所建立的回归模型给予许多更详细深入的实际解释。 建模原理 设有 q个因变量{}和p自变量{}。为了研究因变量和自变量的统计关系,我们观测了n个样本点,由此构成了自变量

您可能关注的文档

文档评论(0)

502992 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档