- 1、本文档共29页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
又邑忠烈右屹淤
Reinforcement Learning In Continuous Time and Space
Kenji Doya
ATR Human Information Pro cessing Research Lab oratories
2-2 Hikaridai, Seika, Soraku, Kyoto 619-0288, Japan
Neural Computation, 12(1), 219-245 (2000).
Abstract
This pap er presents a reinforcement learning framework for continuous-
time dynamical systems without a priori discretization of time, state, and
action. Based on the Hamilton-Jacobi-Bellman (HJB) equation for innite-
horizon, discounted reward problems, we derive algorithms for estimating
value functions and for improving p olicies with the use of function approx-
imators. The pro cess of value function estimation is formulated as the
minimization of a continuous-time form of the temp oral dierence (TD)
error. Up date metho ds based on backward Euler approximation and ex-
p onential eligibility traces are derived and their corresp ondences with the
conventional residual gradient, TD(0), and TD( ) algorithms are shown.
For p olicy improvement, two metho ds, namely, a continuous actor-critic
metho d and a value-gradient based greedy p olicy, are formulated. As a
sp ecial case of the latter, a nonlinear feedback control law using the value
gradient and the mo del of the input gain is derived. The \advantage up-
dating, a mo del-free algorithm derived previously, is also formulated in
the HJB based framework.
The p erformance of the prop osed algorithms is rst tested in a non-
linear control task of swinging up a p endulum with limited torque. It is
sho
文档评论(0)