网站大量收购闲置独家精品文档,联系QQ:2885784924

一种新的局部不变特征检测和描述算法.pdf

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
一种新的局部不变特征检测和描述算法

33 5 Vol. 33 No. 5 2010 5 CH INESE JOURNA L OF COMPU TERS May 2010 杨 恒 王 庆 ( 710072) . , , . , . , H arris , Harris , . . , , , , . . ; ; ; ; TP391 DOI : 10. 3724/ SP. J. 101 . 2010.00935 A Novel Local Invariant Feature Detection and Description Algorithm YANG Heng WANG Q ing (School of Computer Science and Engineering, N orthwestern Poly technical University, X i!an 710072) Abstract Local invariant features have been successfully applied in many applications in comput er vision. T his paper proposes a novel local feature detection and description algorithm. T he fea tures are invariant to image rotation, scale and illumination changes, and even can be invariant to weak affine transformations. In general, the local feature extraction process can be divided into tw o key steps w hich are feature detection step and feature description step. In the detection step, firstly, the Harris corners are detected in every scale level image. Secondly , the local scalespace extrema is searched w ithin a w indow w hich is centerlocalized on the multiscale Harris corners. Finally, the predominant orientation is computed for each keypoint. T he proposed feature detec tion algorithm has good repeatability performance. In the description step, a novel local descrip tor is created based on the gradient distance and orientation histogram ( GDOH) . GDOH not only has good matching performance, but also has low dimensionality, w hich results in much faster feature matching speed. Extensive experimental results have demonstrated the e

文档评论(0)

docman126 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7042123103000003

1亿VIP精品文档

相关文档