- 1、本文档共55页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第六讲工具变量回归
工具变量回归 在计量经济学中,把所有与扰动项相关的解释变量都称为“内生变量”。这与一般经济学理论中的定义有所不同。 1。与误差项相关的变量称为内生变量(endogenous variable)。 2。与误差项不相关的变量称为外生变量(exogenous variable)。 造成误差项与回归变量相关(内生性)的原因很多,但我们主要考虑如下几个方面: 遗漏变量偏差 变量有测量误差 双向因果关系。 遗漏变量偏差 变量有测量误差 测量数据正确时:假设方程为: 双向因果关系 之前我们假定因果关系是从回归变量到因变量的(X导致了Y)。但如果因果关系同时也是从因变量到一个或多个回归变量(Y导致了X)的呢?如果是这样的话,因果关系是向前的也是“向后” 的,即存在双向因果关系,如果存在双向因果关系,则OLS回归中同时包含了这两个效应,因此OLS估计量是有偏的、非一致的。 遗漏变量偏差可采用在多元回归中加入遗漏变量的方法加以解决,但前提是只有当你有遗漏变量数据时上述方法才可行。 双向因果关系偏差是指如果有时因果关系是从X到Y又从Y到X时,此时仅用多元回归无法消除这一偏差。同样, 变量有测量误差也无法用我们前面学过的方法解决。 因此我们就必须寻找一种新的方法。 工具变量(instrumental variable, IV)回归是当回归变量X与误差项u相关时获得总体回归方程未知系数一致估计量的一般方法。我们经常称其为IV估计。 其基本思想是:假设方程是: 我们的工作就是要寻找相应的工具变量将解释变量分解成内生变量和外生变量,然后利用两阶段最小二乘法(TSLS)进行估计。 工具变量的选取 一个有效的工具变量必须满足称为工具变量相关性和工具变量外生性两个条件:即 两阶段最小二乘估计量 若工具变量Z满足工具变量相关性和外生性的条件,则可用称为两阶段最小二乘(TSLS)的IV估计量估计系数?1。 两阶段最小二乘估计量分两阶段计算: 第一阶段把X分解成两部分:即与回归误差项相关的一部分以及与误差项无关的一部分。 第二阶段是利用与误差项无关的那部分进行估计。 一般IV回归模型 引入工具变量的个数 假设我们有n个内生解释变量,引入了m个工具变量,n和m的关系是什么? n=m 恰好识别 nm 过度识别 nm 不可识别 只有恰好识别和过度识别才能用IV方法估计。 两阶段最小二乘法的stata命令: ivregress 2sls depvar [varlist1] (varlist2 =instlist),r,first 其中,“depvar”为被解释变量,varlist1为外生解释变量,varlist2为所有的内生解释变量集合,instlist为工具变量集合。 选择项r表示使用异方差稳健的标准误,选择项“first”表示显示第一阶段的回归。 工具变量有效性的检验 工具变量相关性 工具变量相关性越强,也就是工具变量能解释越多的X变动,则IV回归中能用的信息就越多,因此利用相关性更强的工具变量得到的估计量也更精确。 弱工具变量:如果虽然 但是 弱工具变量几乎不能解释X的变动。 弱工具变量检验准则 1. 偏R2(Shea’s partial R2) 含义:在第一阶段回归中,在控制外生变量 影响的前提下,看其它变量对某内生变量的解释力,或者说,在第一阶段回归中,剔除掉外生变量的影响。 2.最小特征值统计量F:经验上F应该大于10。 Stata 命令: estat firststage,all forcenonrobust 3. Cragg-Donald Wald F 统计量 4. Kleibergen-Paap Wald rk F 统计量” Stata命令:ivreg2 如果存在弱工具变量该怎么办? 1. 如果有很多工具变量,有部分强工具变量和部分弱工具变量,可以舍弃较弱的工具变量而选用相关性较强的工具变量子集。在stata中,可以使用ivreg2命令进行“冗余检验”,以决定选择舍弃哪个工具变量。(直观上,冗余工具变量是那些第一阶段回归中不显著的变量。) 2. 如果系数是恰好识别的,则你不能略去弱工具变量。在这种情况下,有两个选择: 第一个选择是寻找其他较强的工具变量。(难度较大) 第二个选择是利用弱工具变量继续进行实证分析,但采用的方法不再是TSLS。而是对弱工具变量不太敏感的有限信息极大似然法(LIML)。在大样本下,LIML 与2SLS是渐近等价的,但在存在弱工具变量的情况下,LIML 的小样本性质可能优于2SLS。 LIML 的 Stata 命令为 ivregr
文档评论(0)