电容模块在缓冲电路中的应用.docVIP

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
电容模块在缓冲电路中的应用

摘要:讨论了IGBT模块缓冲电路的缓冲原理,给出了三种通用的IGBT缓冲电容,并介绍了美国CDE公司的三种电容模块的基本参数和特点以及在缓冲电路中的应用。 ??? 关键词:IGBT 缓冲电容 电容模块 1 引言 众所周知,在电力电子功率器件的应用电路中,无一例外地都要设置缓冲电路,即吸收电路。因为全控制器件在电路工作时莫名其妙损坏的原因虽然很多,但缓冲电路和缓冲电容选择不当是不可忽略的重要原因所在。 2 缓冲原理 电路中器件的损坏,一般都是在器件在开关过程中遭受了过大的di/dt、du/dt或瞬时功耗的冲击而造成的。缓冲电路的作用就是改变器件的开关轨迹,控制各种瞬态时的过电压,以降低器件开关损耗来确保器件的安全。 图1所示为GTR在驱动感性负载时的开关波形。不难看出,在开通和送断过程中的某一时刻,GTR集电极电压Uc和集电极电流ic将同时达到最大值,此时瞬时功耗也最大。加入缓冲电路可将这一开关功耗转移到相关的电阻上消耗掉,从而达到保证器件安全运行的目的。 典型复合式缓冲电路如图2所示。当GTR关断时,负载电流经缓冲二极管D向缓冲电容C充电,同时集电极电流ic逐渐减少。由于电容C两端电压不能突变,所以有效地限制了GTR上集电极电压的上升率du/dt,也避免了集电极电压Uc和集电极电流ic同时达到最大值。而GTR集电极上的母线电感以及缓冲电路元件内部的杂散电感在GTR开通时储存的能量LI2/2,将转换成CV2/2储存在缓冲电容C中。因此当GTR开通时,集电极母线电感以及其它杂散电感,又有效地限制了GTR集电极上的电流上升率di/dt,从而也避免了集电极电压Uc和集电极电流ic同时达到最大值。这样,缓冲电容C通过外接电阻R和 GTR开关放电,以使其储存的开关能量在外接电阻和电路元件内部电阻上消耗掉。从而将GTR运行时产生的开关损耗转移到缓冲电路,并在相关电阻上以热的形式消耗掉,经达到保护GTR安全运行的目的。 缓冲电容C的容量不同,其缓冲效果也不相同。图3画出了不同容量下GTR电容、电压的关断为缓冲电容C容量较小时的波形,图3( c)为缓冲电容C容量较大时的波形。不难看出,无缓冲电容时,集电极电压上升时间极短,致使电流、电压同时达到最大,因而瞬时功耗最大。缓冲电容C容量较小时,集电极电流下降至零之前,其电压已上升至电源值,瞬时耗较大。缓冲电容C容量较大时,集电极电流下降至零之后,其电压才上升至电源值。因而瞬时功耗较小。 3 IGBT缓冲电路 通用的IGBT缓冲电路有图4所示的三种形式。其中,图4(a)为单只低电感吸收电容构成的缓冲电路,适用于小功率IGBT模块,用来对瞬变电压有效时的低成本控制,使用时一般将其接在C1和E2之间(两单元模块)或P和N之间(六单元模块)。图4(b)为RCD构成的缓冲电路,适用于较小功率的IGBT模块,缓冲二极管D可箝住瞬变电压,以抑制由于母线寄存电感引起的寄存振荡。其RC时间常数应设计为开关周期的1/3,即τ=T/3=1/3f。图4(c)为P型RCD和N型RCD构成的缓冲电路,适用于大功率IGBT模块,其功能类似于图4(b)缓冲电路,但其回路电感更小。若同时配合使用图4(a)缓冲电路,则可减小缓冲二极管的应力,从而使缓冲效果达到最佳。 IGBT采用缓冲电路后的典型关断电压波形如图5所示。图中,VCE起始部分的毛刺ΔV1是由缓冲电路的寄存电感和缓冲二极管的恢复过程引起的。其值由下式计算: ΔV1=Lsdi/dt 式中,Ls为缓冲电路的寄存电感,di/dt为关断瞬间或二极管恢复皮瞬间的电流上升率,其最恶劣的值接近0.02ic(A/ns)。 如果ΔV1已被设定,则可确定缓冲电路允许的最大电感量Ls。如某IGBT电路的工作电流峰值为400A,ΔV1≤100V,可算出在最恶劣情况下的Ls: Ls=ΔV1/(di/dt)=100/(0.02×400)=12.5(nH) 图中的ΔV2是在缓冲电容充电时,瞬态电压再次上升的峰值,它与缓冲电容的值和母线寄生电感有关,根据能量守恒定律,母线电感以及缓冲电路元件内部的杂散电感在IGBT开通时储存的能量要转储在缓冲电容中,因此有:Lpi2/2=ΔV2C2/2式,Lp为母线寄生电感,I为工作电流,C为缓冲电容的值,ΔV2为缓冲电压的峰值。同样,如果ΔV2已被设定,同可确定缓冲电容的值。不难看出,大功率IGBT电路要求母线电感以及缓冲电路元件内部的杂散电感愈小愈好。这不仅可以降低ΔV1,而且可以减小缓电容C的值,从而降低成本。表1是针对不同直流母线电感量列出的缓冲电容的推荐值。该表是在ΔV2≤100V时算出的。也可以使用经验估算的办法来确定电容值,通常每100A集电极电流约取1μF缓冲电容值。这样得到的值,也能较好的控制瞬态电压。表1 不同直流母线电感时的缓冲电容推荐值 模块型号

文档评论(0)

2105194781 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档