遥感影像数据融合原理与方法资料.ppt

  1. 1、本文档共22页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
遥感影像数据融合原理与方法资料

遥感影像数据融合原理与方法 顾晓鹤 2003.10.17 一. 数据融合基本涵义 数据融合(data fusion)最早被应用于军事领域。 现在数据融合的主要应用领域有:多源影像复合、机器人和智能仪器系统、战场和无人驾驶飞机、图像分析与理解、目标检测与跟踪、自动目标识别等等。 在遥感中,数据融合属于一种属性融合,它是将同一地区的多源遥感影像数据加以智能化合成,产生比单一信息源更精确、更完全、更可靠的估计和判断。 相对于单源遥感影象数据,多源遥感影象数据所提供的信息具有以下特点: 1.冗余性:表示多源遥感影像数据对环境或目标的表示、描述或解译结果相同; 2.互补性:指信息来自不同的自由度且相互独立 3.合作性:不同传感器在观测和处理信息时对其它信息有依赖关系; 4.信息分层的结构特性:数据融合所处理的多源遥感信息可以在不同的信息层次上出现,这些信息抽象层次包括像素层、特征层和决策层,分层结构和并行处理机制还可保证系统的实时性。 实质: 在统一地理坐标系中将对同一目标检测的多幅遥感图像数据采用一定的算法,生成一幅新的、更能有效表示该目标的图像信息。 目的:将单一传感器的多波段信息或不同类别传感器所提供的信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,改善遥感信息提取的及时性和可靠性,提高数据的使用效率。 二、数据融合原理及过程 一般来说,遥感影像的数据融合分为预处理和数据融合两步 1.预处理:主要包括遥感影像的几何纠正、大气订正、辐射校正及空间配准 (1)几何纠正、大气订正及辐射校正的目的主要在于去处透视收缩、叠掩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响; (2)影像空间配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异。 影像的空间配准时遥感影像数据融合的前提 空间配准一般可分为以下步骤 : (1)特征选择:在欲配准的两幅影像上,选择如边界、线状物交叉点、区域轮廓线等明显的特征。 (2)特征匹配:采用一定配准算法,找处两幅影像上对应的明显地物点,作为控制点。 (3)空间变化:根据控制点,建立影像间的映射关系。 (4)插值:根据映射关系,对非参考影像进行重采样,获得同参考影像配准的影像。 空间配准的精度一般要求在1~2个像元内。空间配准中最关键、最困难的一步就是通过特征匹配寻找对应的明显地物点作为控制点。 2.数据融合 根据融合目的和融合层次智能地选择合适的融合算法,将空间配准的遥感影像数据(或提取的图像特征或模式识别的属性说明)进行有机合成,得到目标的更准确表示或估计 。 对于各种算法所获得的融合遥感信息,有时还需要做进一步的处理,如“匹配处理”和“类型变换”等,以便得到目标的更准确表示或估计。 三、数据融合分类及方法 1 数据融合方法分类 遥感影像的数据融合方法分为三类:基于像元(pixel)级的融合、基于特征(feature)级的融合、基于决策(decision)级的融合。融合的水平依次从低到高。 1.1 像元级融合 像元级融合是一种低水平的融合。 像元级融合的流程为:经过预处理的遥感影像数据——数据融合——特征提取——融合属性说明。 优点:保留了尽可能多的信息,具有最高精度。 局限性: 1. 效率低下。由于处理的传感器数据量大,所以处理时间较长,实时性差。 2. 分析数据限制。为了便于像元比较,对传感器信息的配准精度要求很高,而且要求影像来源于一组同质传感器或同单位的。 3.分析能力差。不能实现对影像的有效理解和分析 4.纠错要求。由于底层传感器信息存在的不确定性、不完全性或不稳定性,所以对融合过程中的纠错能力有较高要求。 5.抗干扰性差。 像元级融合所包含的具体融合方法有:代数法、IHS变换、小波变换、主成分变换(PCT)、K-T变换等 1.2 特征级融合 特征级融合是一种中等水平的融合。在这一级别中,先是将各遥感影像数据进行特征提取,提取的特征信息应是原始信息的充分表示量或充分统计量,然后按特征信息对多源数据进行分类、聚集和综合,产生特征矢量,而后采用一些基于特征级融合方法融合这些特征矢量,作出基于融合特征矢量的属性说明。 特征级融合的流程为:经过预处理的遥感影像数据——特征提取——特征级融合——(融合)属性说明。 1.3 决策级融合 决策级融合是最高水平的融合。融合的结果为指挥、控制、决策提供了依据。在这一级别中,首先对每一数据进行属性说明,然后对其结果加以融合,得到目标或环境的融合属性说明。 决

文档评论(0)

wyjy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档