- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
TiO2光催化降解有机染物的研究(上) - 西安交通大学教师个人主页
TiO2光催化降解有机污染物的研究 主要内容 1. TiO2光催化技术简介 1.1 TiO2光催化背景介绍 1.2 TiO2光催化的基本原理 1.3 TiO2光催化技术的特点 1.4 提高TiO2光催化效率的主要途径 1.5 TiO2光催化降解有机污染物研究进展 1.1 TiO2光催化背景介绍 什么是光催化? 概括说来,就是光触媒(催化材料)在外界可见光的作用下发生催化作用。 光催化一般是多种相态之间的催化反应。 光触媒在光照条件(可以是不同波长的光照)下所起到催化作用的化学反应,统称为光反应。 光合作用也可以看作光催化 起源 A.1972年Fujishima和Honda在n-型半导体TiO电极上发现了水的光催化分解作用,揭开了光催化技术研究的序幕。 Fujishima A, Honda K. Nature, 1972, 238:37~ 38 B.1976年Garey用TiO2光催化剂脱除了多氯联苯中的氯,1977年Frank光催化氧化CN-为OCN-,光催化技术在环保方面的应用 研究开始启动。 C.近十几年来,半导体光催化技术在环保、制氢、卫生保健等方面的 应用研究发展迅速,纳米光催化成为国际上最活跃的研究领域之一。 光催化氧化降解污染物的过程 a.TiO2吸收紫外光激发 b.活性自由基的产生 c.有机物的降解 TiO2吸收紫外光激发 活性自由基的产生 hvb+ + OH- → ·OH hvb+ + H2O → ·OH + H+ hvb+ + Red → ·Red+ ecb- +O2(ads) → ·O2(ads)- ·O2(ads)- + H+ → ·HO2 2·HO2 → H2O2 + O2 H2O2 + ecb- → ·OH + OH- 光催化的技术特征 (1)低温深度反应:光催化氧化可在室温下将水、空气和土壤中有机污染物完全氧化成无毒无害的物质。而传统的高温焚烧技术则需要在极高的温度下才可将污染物摧毁,即使用常规的催化氧化方法亦需要几百度的高温。(2)净化彻底:它直接将空气中的有机污染物,完全氧化成无毒无害的物质,不留任何二次污染,目前广泛采用的活性炭吸附法不分解污染物,只是将污染源转移。(3)绿色能源:光催化可利用太阳光作为能源来活化光催化剂,驱动氧化—还原反应,而且光催化剂在反应过程中并不消耗。从能源角度而言,这一特征使光催化技术更具魅力。 (4)氧化性强:大量研究表明,半导体光催化具有氧化性强的特点,对臭氧难以氧化的某些有机物如三氯甲烷、四氯化炭、六氯苯、都能有效地加以分解,所以对难以降解的有机物具有特别意义,光催化的有效氧化剂是羟基自由基(HO),HO的氧化性高于常见的臭氧、双氧水、高锰酸钾、次氯酸等。(5)广谱性:光催化对从烃到羧酸的种类众多有机物都有效,美国环保署公布的九大类114种污染物均被证实可通过光催化得到治理,即使对原子有机物如卤代烃、染料、含氮有机物、有机磷杀虫剂也有很好的去除效果,一般经过持续反应可达到完全净化。(6)寿命长:理论上,催化剂的寿命是无限长的。 1.2 TiO2光催化技术的特点 优点 能彻底破坏有机污染物,不存在二次污染问题 不需要大量消耗光能以外的其它物质,能耗和材料消耗低 可在常温常压下进行反应,条件温和 问题 催化剂TiO2的分离问题 提高TiO2的光催化效率 扩展TiO2可利用的光谱范围 光触媒(光催化剂) 光触媒[PHOTOCATALYSIS]是光 [Photo=Light] + 触媒(催化剂)[catalyst]的合成词。 光触媒是一种在光的照射下,自身不起变化,却可以促进化学反应的物质,光触媒是利用自然界存在的光能转换成为化学反应所需的能量,来产生催化作用,使周围之氧气及水分子激发成极具氧化力的 OH-及 O2-自由负离子。几乎可分解所有对人体和环境有害的有机物质及部分无机物质,不仅能加速反应,亦能运用自然界的定侓,不造成资源浪费与附加污染形成。 光触媒于1967年被当时还是东京大学研究生的藤岛昭教授发现。 在一次试验中对放入水中的氧化钛单结晶进行了光线照射,结果 发现水被分解成了氧和氢。这一效果作为 “ 本多 · 藤岛效果 ” (Honda-Fujishima Effect)而闻名于世,该名称组合了藤岛教授 和当时他的指导教师----东京工艺大学校长本多健一的名字。 由于是借助光的力量促进氧化分解反应,因此后来将这一现象中的氧化钛称作光触媒。 这种现象相当于将光能转变为化学能。 常见光催化材料的Ebg(e
文档评论(0)