有限元理论与应用选读.docx

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
有限元理论与应用摘要:阐述了有限元理论的优点为:物理概念清晰,使用灵活和通用性强,易于实现自动化。有限元法可以广泛应用于各种形状支座和荷载条件的薄壁结构,并可用于解决一维、二维、三维单元。有限元是数值建模与求解中应用最广泛的一种方法,半个多世纪以来在工程数值计算中发挥了至关重要的作用,广泛地渗透到机械工程等学科的各个分支中。学者奕茂田等说,传统有限元理论成熟,原理简单,并且有强大的商业软件支持,在许多大型工程问题的求解分析中功不可磨,因此对传统有限元的每一点成功改进都将会产生深远的现实意义。有限元法口前被公认为是一种最强有力且相当完善的结构分析方法。该方法简而言之,就是在力学模型上进行近似的数值计算,即先把连续体简化为有限个单元组成的离散化模型,然后再对离散的模型给出数值解答。关键词:有限元法应用结构分析一:有限元法的简介有限元法(FEM)是随着计算机的广泛应用而产生的一种计算方法。它是近似求解一般连续体问题的数值方法。从物理方面看:它是用仅在单元结点上彼此相连的单元组合体来代替等分析的连续体,也即将待分析的连续体划分成若干个彼此相联系的单元。通过单元的特性分析,来求解整个连续体的特性。从数学方面看:它是使一个连续的无限自由度问题变成离散的有限自由度问题,使问题大大简化,或者说使不能求解的问题能够求解。一经求解出单元未知量,就可以利用插值函数确定连续体上的场函数。显然随着单元数目的增加,即单元尺寸的缩小,解的近似程度将不断得到改进。如果单元是满足收敛要求的,近似解将收敛于数确解。有限元方法的主要优点有:(1)物理概念清晰,有限元一开始就从力学角度进行简化,易于掌握和应用;(2)使用中的灵活性和通用性,有限元对于各种复杂的因素,例如复杂的几何形状(如桥梁中的单室、多室、单箱、多箱、简支、连续等),任意边界条件,任何支撑情况以及材料的不均匀特性和结构中由不同类型构件组合而成的构件等都能灵活的加以考虑,而不会发生处理上的困难;(3)有限元易于实现自动化,可充分利用电子训一算机来进行结构分析,从而提高效率。目前较为流行的有限元程序主要有SAP系列、ADINA. NASTRAN. QJX. ANSYS. BSAS等,为有限元方法的椎广和应用,提供了有利的务件。然而,随着结构规模的不断扩大,其分析规模也将不断增大,其单元划分、输入(出)数据及占有内存等也将增多,这样势必造成计算工作量的急剧增多,大大的增高了对计算机内存及外存的需求,并使上机准备过于繁琐,人们往往要花费很多精力去输入数据,而大量的数据输出又为设训一人员选取对自己有用的部分造成较大困难。有限元方法是一套求解微分力程的系统化数值计算方法,它比传统解法具有理论完整可靠。物理直观意义明确,解题效能强等优点,特别是这种力法适应性强,形式规范,所以近年来在电子计算机的配合下,已推广应用到很多工程技术部门和某些科学领域。有限元法目前被公认为是一种最强有力且相当完善的结构分析方法。该方法简而言之,就是在力学模型上进行近似的数值计算,即先把连续体简化为有限个单元组成的离散化模型,然后再对离散的模型给出数值解答。有限元方法的主要优点有: 1、物理概念清晰,有限元一开始就从力学角度进行简化,易干掌握和应用; 2、使用中的灵活性和通用性,有限元对于各种复杂的因素例如复杂的几何形状(如桥梁中的单室、多室、单箱、多箱、简支、连续等),任意边界条件,任何支撑情况以及材料的不均匀特性和结构中由不同类型构件组合而成的构件等都能灵活的加以考虑,而不会发生处理上的困难; 3、有限元易于实现自动化,可充分利用电子计算机来进行结构分析,从而提高效率。有限元法求解步骤对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:  第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。  第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。  第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。  为保证问题求解的收敛性,单元推导有许多原则要遵循。对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,

文档评论(0)

1112111 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档