网站大量收购闲置独家精品文档,联系QQ:2885784924

Bionumerics生物信息分析软件应用简介.ppt

Bionumerics生物信息分析软件应用简介.ppt

  1. 1、本文档共29页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
One powerful platform for databasing, analyzing, and sharing all your biological data Fingerprint Data. Normalization and analysis of electrophoresis fingerprints from slab gels, automated sequencers, and lab-on-a chip systems. Preprocessing and analysis of spectral data such as MALDI. Character Data. Import and analyze character data from a wide range of sources including phenotype panels, antibiotic resistance profiles, microarrays, etc. Sequence Data. Assemble and analyze Sanger sequence data and NGS sequence reads. Access a wide variety of sequence analysis, search and alignment, and comparison tools. Whole Genome Map Data. Align and cluster whole genome maps for bacterial strain typing and identification. Trend Data. Analyze sequential measurements that express an evolution of one parameter in function of another, e.g., enzymatic activity, growth curves, rt-PCR, etc. Tree and Network Inference. Select from an impressive range of clustering algorithms to calculate evolutionary trees and relationship networks. Display confidence levels on clusters and branches. Dimensioning and Matrix Mining. Create non-hierarchical groupings using various ordination techniques such as principal components analysis, multidimensional scaling, discriminant analysis, and identify discriminating features between groups. Perform in-depth analysis of character matrices. Genome Analysis Tools. Align and compare chromosomes side-by-side or calculate multiple chromosome alignments. Calculate SNPs and mutations on multi-chromosome alignments and annotate new chromosomes. Perform microbial metagenomics diversity analysis. Classifiers and Identification. Identify unknown samples against reference data sets using state-of-the-art classifiers such as Naive Bayesian, SVM, Shrunken Centroids, and a range of similarity coefficients. Enhance your identification projects with parameter optimization and comprehensive cross-validation tools. Compare and validate different techniques or procedures.

文档评论(0)

shaoye348 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档