网站大量收购闲置独家精品文档,联系QQ:2885784924

SPSS统计软件简介.ppt

  1. 1、本文档共96页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
此处已经开始了拟合,Block 0拟合的是只有常数的无效模型,上表为分类预测表,可见在17例观察值为0的记录中,共有17例被预测为0,9例1也都被预测为0,总预测准确率为65.4%,这是不纳入任何解释变量时的预测准确率,相当于比较基线。 上表为Block 0时的变量系数,可见常数的系数值为-0.636。 上表为在Block 0处尚未纳入分析方程的侯选变量,所作的检验表示如果分别将他们纳入方程,则方程的改变是否会有显著意义(根据所用统计量的不同,可能是拟合优度,Deviance值等)。可见如果将X2系列的哑变量纳入方程,则方程的改变是有显著意义的,X4和X5也是如此,由于Stepwise方法是一个一个的进入变量,下一步将会先纳入P值最小的变量X2,然后再重新计算该表,再做选择。 此处开始了Block 1的拟合,根据我们的设定,采用的方法为Forward(我们只设定了一个Block,所以后面不会再有Block 2了)。上表为全局检验,对每一步都作了Step、Block和Model的检验,可见6个检验都是有意义的。 此处为模型概况汇总,可见从STEP1到STEP2,DEVINCE从18降到11,两种决定系数也都有上升。 此处为每一步的预测情况汇总,可见准确率由Block 0的65%上升到了84%,最后达到96%,效果不错,最终只出现了一例错判。 上表为方程中变量检验情况列表,分别给出了Step 1和Step 2的拟合情况。注意X4的P值略大于0.05,但仍然是可以接受的,因为这里用到的是排除标准(默认为0.1),该变量可以留在方程中。以Step 2中的X2为例,可见其系数为2.413,OR值为11。 上表为假设将这些变量单独移出方程,则方程的改变有无统计学意义,可见都是有统计学意义的,因此他们应当保留在方程中。 最后这个表格说明的是在每一步中,尚未进入方程的变量如果再进入现有方程,则方程的改变有无统计学意义。可见在Step 1时,X4还应该引入,而在Step 2时,其它变量是否引入都无关了。 模型的进一步优化与简单诊断 模型的进一步优化 前面我们将X1~X5直接引入了方程,实际上,其中X2、X4、X5这三个自变量为多分类变量,我们并无证据认为它们之间个各等级的OR值是成倍上升的,严格来说,这里应当采用哑变量来分析,即需要用Categorical钮将他们定义为分类变量。但本次分析不能这样做,原因是这里总例数只有26例,如果引入哑变量模型会使得每个等级的记录数非常少,从而分析结果将极为奇怪,无法正常解释,但为了说明哑变量模型的用法,下面我将演示它是如何做的,毕竟不是每个例子都只有26例。 上表为自变量中多分类变量的哑变量取值情况代码表。左侧为原变量名及取值,右侧为相应的哑变量名及编码情况:以X5为例,表中可见X5=4时,即取值最高的情况被作为了基线水平,这是多分类变量生成哑变量的默认情况。而X5(1)代表的是X5=1的情况(X5为1时取1,否则取0),X5(2)代表的是X5=2的情况,依此类推。同时注意到许多等级值有几个记录,显然后面的分析结果不会太好。 上表出现了非常有趣的现象:所有的检验P值均远远大于0.05,但是所有的变量均没有被移出方程,这是怎么回事?再看看下面的这个表格吧。 这个表格为方程的似然值改变情况的检验,可见在最后Step 2生成的方程中,无论移出X2还是X4都会引起方程的显著性改变。也就是说,似然比检验的结果和上面的Walds检验结果冲突,以谁为准?此处应以似然比检验为准,因为它是全局性的检验,且Walds检验本身就不太准,这一点大家记住就行了,实在要弄明白请去查阅相关文献。 上表为Block 1的迭代记录,可见无论是似然值,还是三个系数值,均是从迭代开始就向着一个方向发展,最终达到收敛,这说明整个迭代过程是健康的,问题不大;如果中途出现波折,尤其是当引入新变量后变化方向改变了,则提示要好好研究。 上表为方程中变量的相关矩阵,可见X2和常数相关性较强,当引入X4后仍然如此,提示要关注这一现象,以防因自变量间的共线性导致方程系数不稳(此时迭代记录多半也会有波动)。当然,由于本例只有26条记录,这一问题是没有办法深入研究的。 上图是Step 1结束时,即只引入X2时的预测图,0和1代表实际取值,当预测的概率值大于0.5时,则预测结果为1,反之为0,由上图可见,该模型对0的预测是比较好的,多数的概率都在0附近,但对1的预测不准,即使正确的,计算出的概率也在0.8左右,并且有好几个都判错了。 上图为Step 2结束后模型的预测状况,可见此时预测结果有了较大的改善,概率精度提高了许多,只有一例0被错判为了1,并且从分布上看,这一例可能是极端情况,再引入其它变量也不见的能将预测效果改变多少。

您可能关注的文档

文档评论(0)

shaoye348 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档