- 1、本文档共42页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
SVM应用的例子
* * * * * * * * * * * * * * * * 特征空间的隐式映射:核函数 ?? 用之前的方法将限制或约束条件加入到目标函数中,得到新的拉格朗日函数,进行前文中的运算。?? ?? ?? ??? * SVM应用的例子 Object Tracking With Multi-View Support Vector Machines Abstract—How to build an accurate and reliable appearancemodel to improve the performance is a crucial problem inobject tracking. Since the multi-view learning can lead to moreaccurate and robust representation of the object, in this paper,we propose a novel tracking method via multi-view learningframework by using multiple support vector machines (SVM).The multi-view SVMs tracking method is constructed based onmultiple views of features and a novel combination strategy. Torealize a comprehensive representation, we select three differenttypes of features, i.e., gray scale value, histogram of oriented gradients (HOG), and local binary pattern (LBP), to train the corresponding SVMs. These features represent the object from the perspectives of description, detection, and recognition,respectively. In order to realize the combination of the SVMs under the multi-view learning framework, we present a novel * 特征空间的隐式映射:核函数 collaborative strategy with entropy criterion, which is acquired by the confidence distribution of the candidate samples. In addition, to learn the changes of the object and the scenario, we propose a novel update scheme based on subspace evolution strategy. The new scheme can control the model update adaptively and help to address the occlusion problems. We conduct our approach on several public video sequences and the experimental results demonstrate that our method is robust and accurate, and can achieve the state-of-the-art tracking performance. Index Terms—Entropy criterion, multi-view learning, object tracking, subspace evolution, support vector machines (SVM). ?? ?? ??? * 特征空间的隐式映射:核函数 * 特征空间的隐式映射:核函数 * #include opencv2/opencv.hpp extern C { #include vl/generic.h #include vl/lbp.h #include vl/hog.h float SVMweights[3];//Grey Hog Lbp CvSVM SVM1; CvSVM SVM2;
您可能关注的文档
- INTEGRALABPLUS专业成就理想-IBARadioPharmaSolutions.PDF
- IP 应用程序加速 - Aryaka.PDF
- IP位址表示法.PDF
- iPad2的CDMA前面板粘合带更换-iFixit.PDF
- IQDP80+QMB1200 006687015+Q1196 1512047D 维修报告.PDF
- Hydraulic gear pumps 液压齿轮泵 - Casappa.PDF
- ITAR出口法规遵守具强制性 - 台湾区航太工业同业公会.PPT
- Internal Inspection Guideline for Heater 取暖器验货指南 - 外贸验货员网.PPT
- ItemNo.2-1.3PE泡绵双面胶带5.建议用于汽车外饰件的粘接(用于平整.ppt
- IRS即时反馈式创新教学.PDF
文档评论(0)