浅析空间自相关的内容及意义. (2).docVIP

浅析空间自相关的内容及意义. (2).doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
浅析空间自相关的内容及意义摘要:本文主要介绍了空间自相关的含义、测度指标及研究空间自相关的意义。首先,明确空间自相关是检验某一要素的属性值是否显著地与其相邻空间点上的属性值相关联的重要指标,揭示空间参考单元与其邻近的空间单元属性特征值之间的相似性或相关性。其次,介绍用来测度空间自相关性的指标,可以分为全局指标和局部指标,常用的指标有:Moran’s I、Geary’s C和Getis-Ord G。最后,进一步阐述了空间自相关的研究意义。关键字:空间自相关;全局指标;局部指标The content and research significance of spatial autocorrelation analysisAbstract: In this paper, the content, the index and the research significance of spatial autocorrelation were analyzed. Firstly, the content of spatial autocorrelation is discussed. Spatial autocorrelation is related to the correlation of the same variables, and also can be used to measure the degree of concentration of the attribute value, in order to reveal the correlation between the space reference unit and its near unit, including global spatial autocorrelation and local spatial autocorrelation. Secondly, it analyzes the index of spatial autocorrelation, the main index included Moran’s I, Geary’s C and Getis-Ord G. Thirdly, this paper discussed the research signification of spatial autocorrelation analysis. Key words: spatial autocorrelation; global index; local index 引言空间自相关是研究空间中某位置的观察值与其相邻位置的观察值是否相关以及相关程度的一种空间数据分析方法[1]。即空间自相关是检验某一要素的属性值是否显著地与其相邻空间点上的属性值相关联的重要指标,可以分为正相关和负相关,正相关表明某单元的属性值变化与其邻近空间单元具有相同变化趋势,负相关则相反[2]。在地学邻域,地统计学数据主要来源于研究对象在空间区域上的抽样,进而分析各种自然现象的空间变异规律和空间格局,并且已被证明是研究空间分异和空间格局的有效方法。在国外,20 世纪60年代就有学者开始运用空间自相关方法研究生态学、遗传学等问题, 目前已应用于数字图像处理、流行病学、生物学、区域经济与社会研究、犯罪学,等方面的研究。国内空间自相关的相关研究始于20世纪90年代, 主要集中在生态学、生物学、土壤学、流行病学等领域。也有部分学者采用空间自相关方法对城镇群空间结构[3]、区域经济格局[4,5]等进行了较为深入的研究。近几年来,国内关于空间自相关的研究众多,内容涉及到理论、方法和技术,更多的是实践和应用。其检验手段也在不断发展和完善。然而,众多的研究并不表明空间自相关分析臻于成熟。事实上,还有大量的基本问题没有得到有效解决。基于时间滞后的空间自相关分析方法至今没有发展起来。此外,空间权重矩阵如何选择和准确赋值、空间自相关的统计参量如何选择和解释、空间相互作用的局域性和长程作用如何协调等,也是待解决的难题。本文从空间自相关的含义、测度指标及主要应用及其研究意义进行论述。空间自相关的含义空间自相关是指一些变量在同一个分布区内的观测数据之间潜在的相互依赖性。Tobler地理学第一定律指出:任何事物与别的事物之间都是相关的,但近处的事物比远处的事物的相关性更强。空间数据具有三大属性[6],即空间、时间和专题属性,后两者常常被视为非空间属性。空间属性是指空间对象几何特征,以及与相邻物体的拓扑关系;时间属性是指空间数据总是在某一时刻或者时间段内取得的或者产生的;专题属性是指以上两种属性以外的空间现象的其他特征。即空间数据提供两类信息[7]:一是定位数据和拓扑数据;二是描述研究对象的非空间属性。

文档评论(0)

xeve238 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档