- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
光磁共振(南京大学物理学院 江苏南京 210000)摘要:光磁共振是利用光抽运的方法,进一步提高磁共振灵敏度的技术。本实验依据光磁共振技术,运用“光抽运—磁共振—光探测”的方法,测量地磁场垂直分量和水平分量以及铷原子的相关参量。关键词:光磁共振;光抽运;磁共振;塞曼效应;塞曼子能级;地磁场;朗德因子一、实验目的1.掌握“光抽运—磁共振—光探测”的思想方法和实验技巧,研究原子超精细结构塞曼子能级间的射频磁共振。2. 测定銣原子和的参数:基态朗德因子和原子核的自旋量子数。3. 测定地磁场的垂直分量、水平分量及其倾角。二、实验原理光磁共振技术是根据动量守恒原理,用光学抽运来研究原子超精细结构塞曼子能级间微波或射频磁共振现象的双共振技术。特点是兼有波谱学方法的高分辨率和光谱学方法的高探测灵敏度。1.铷原子的超精细结构及其塞曼分裂铷是一价碱金属原子,有一个价电子,处于第五壳层,主量子数n=5,电子轨道量子数L=0,1,2,3…,n-1,电子自旋S=1/2。铷原子中价电子的轨道角动量和自旋角动量发生轨道—自旋耦合(LS耦合),得到电子总角动量,其数值。当不考虑铷原子核的自旋时,铷原子总磁矩,其中分别为电子的电荷、质量。朗德因子从而形成原子的超精细结构能级,这时,铷原子的基态能级对应于n=5,L=0,S=1/2,J=1/2,即为,相应的朗德因子;铷原子的第一激发态能级对应于n=5,L=1,S=1/2,J=1/2、3/2,是双重态,即为和,相应的朗德因子。的能级跃迁产生光谱线线();的跃迁产生光谱线线()。本实验观测与线有关的能级的超精细结构及其在弱磁场中的塞曼分裂。通常原子核也具有角动量,记原子核的总角动量为,它是核中质子和中子的轨道角动量和自旋角动量的矢量和,核的总角动量的数值,通常也称为核自旋,其中I称为核的自旋量子数,I为整数或半整数,已知稳定的原子核的I值在0~7.5之间。核的总角动量的最大可测的分量值为。当时,原子核的总磁矩为朗德因子的具体数值还没法由其它量子数算出来,只能由实验测定。称为核磁子,质子质量是电子质量的1836倍,因此核磁子比波尔磁子小三个数量级。原子核总角动量和电子总角动量耦合(称为IJ耦合)成原子总角动量,其数值,F为原子总角动量:F=I+J,I+J-1,,。F不同取值的个数为或。从而原子的超精细结构能级细分为由总量子数F标定的超精细结构能级。天然铷中主要含有两种同位素:,其含量分别约为28%和78%。提纯后的非常昂贵,本实验使用天然铷,既可以同时观测两种铷原子的光磁共振现象,又大大降低实验器材费用。原子的基态和第一激发态都分成两个超精细结构能级,对而言,I=1.5,分别由量子数F=I+J=2和F=I-J=1来表征;而对,I=5/2,则由F=3和F=2来表征。原子总角动量与原子总磁矩之间的关系为:导出上面两个式子时本应包含两项,分别与有关,由于跟有关的项比跟有关的另一项要小得多,因此被略去了。在弱的外磁场中,由于磁场较弱未能破坏耦合,必须考虑原子核的总角动量和原子核的总磁矩的影响,用IJ耦合后的和作为原子的总角动量和总磁矩。本实验中作为非磁性物质的铷原子处于弱磁场B(通常表征磁场的物理量,在非磁性物质中和磁性物质的外部用磁感应强度B,再磁性物质内部用磁场强度H)中,铷原子获得附加的能量,其中为波尔磁子,磁量子数,共2F+1个数值,因此对应于总量子数F的超精细结构能级分裂成2F+1个塞曼子能级。相邻子能级之间的数量差均为。当外磁场B=0时,塞曼子能级简并为超精细结构能级。铷原子的能级如下图所示,图1铷原子能级铷原子和的基态和第一激发态的朗德因子和相邻塞曼子能级间能量间隔的理论值列在下表中。21/61-1/6221/21-1/231/92-1/9321/32-1/3表1和相邻塞曼子能级间的能量间隔的理论值在热动平衡条件下,原子在各能级的分布数遵循波尔兹曼分布,由于基态各塞曼子能级的能量差很小,故可认为原子均衡地分布在基态各塞曼子能级上。如果在引起超精细结构能级分裂的弱磁场的垂直方向上加一个射频磁场,当射频光子能量等于基态相邻塞曼子能级的能量间隔时,,会诱导产生这些字能级间的磁共振跃迁,当一个原子发射一份射频光子能量,向下跃迁到相邻塞曼子能级上,但是宏观上没有电磁能量的净吸收或净发射,因而无法从实验上检测出这种磁共振跃迁。若要从实验上检测出磁共振跃迁必须在基态塞曼子能级之间造成显著的粒子数差。光抽运现象就起到这样的作用。2.圆偏光对铷原子的光抽运效应以铷光谱灯发射的光入射到铷蒸气原子样品上时,会产生原子在基态的塞曼子能级与第一激发态的塞曼子能级之间的跃迁,这种光跃迁起作用的是光的电场部分,必须满足能量守恒和角动量守恒,其选择定则为。如果用的是光,它是电场矢量绕磁场方向左旋的圆偏光,在磁场方向,角动量为,它与原子相互作用
文档评论(0)