心理统计学 第七章 参数估计与假设检验.ppt

心理统计学 第七章 参数估计与假设检验.ppt

  1. 1、本文档共52页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
心理统计学 第七章 参数估计与假设检验

(二)方差的区间估计 根据抽样分布理论,只有当样本容量n足够大时,样本标准差的分布才为渐近正态分布,否则,为 分布。所以,精确地估计方法应用 分布先估计方差,在求标准差。 三、假设检验的基本原理 利用样本信息,根据一定概率,对总体参数或分布的某一假设作出拒绝或保留的决断,称为假设检验。 1.假设 假设检验一般有两互相对立的假设。 H0:零假设,或称原假设、虚无假设(null hypothesis)、解消假设;是要检验的对象之间没有差异的假设。 H1:备择假设(alternative hypothesis),或称研究假设、对立假设;是与零假设相对立的假设,即存在差异的假设。 进行假设检验时,一般是从零假设出发,以样本与总体无差异的条件计算统计量的值,并分析计算结果在抽样分布上的概率,根据相应的概率判断应接受零假设、拒绝研究假设还是拒绝零假设、接受研究假设。 2.小概率事件 样本统计量的值在其抽样分布上出现的概率小于或等于事先规定的水平,这时就认为小概率事件发生了。把出现概率很小的随机事件称为小概率事件。 当概率足够小时,可以作为从实际可能性上,把零假设加以否定的理由。因为根据这个原理认为:在随机抽样的条件下,一次实验竟然抽到与总体参数值有这么大差异的样本,可能性是极小的,实际中是罕见的,几乎是不可能的。 3.显著性水平 统计学中把拒绝零假设的概率称为显著性水平,用α表示。 显著性水平也是进行统计推断时,可能犯错误的概率。 常用的显著性水平有两个: α=0.05 和 α=0.01。 在抽样分布曲线上,显著性水平既可以放在曲线的一端(单侧检验),也可以分在曲线的两端(双侧检验)。 图9-1 正态抽样分布上α=0.05的三种不同位置 α α 4.假设检验中的两类错误及其控制 对于总体参数的假设检验,有可能犯两种类型的错误,即α错误和β错误。 表9-1 假设检验中的两类错误 H0为真 H0为假 拒绝H0 α错误 正确 接受H0 正确 β错误 为了将两种错误同时控制在相对最小的程度,研究者往往通过选择适当的显著性水平而对α错误进行控制,如α=0.05或α=0.01。 对β错误,则一方面使样本容量增大,另一方面采用合理的检验形式(即单侧检验或双侧检验)来使β误差得到控制。 在确定检验形式时,凡是检验是否与假设的总体一致的假设检验,α被分散在概率分布曲线的两端,因此称为双侧检验。 双侧检验的假设形式为: H0:μ=μ0, H1:μ≠μ0 凡是检验大于或小于某一特定条件的假设检验,α是在概率分布曲线的一端,因此称为单侧检验。 单侧检验的假设形式为: H0:μ≥μ0,H1:μ<μ0 或者 H0:μ≤μ0,H1:μ>μ0 5.假设检验的基本步骤 一个完整的假设检验过程,一般经过四个主要步骤: ⑴.提出假设 ⑵.选择检验统计量并计算统计量的值 ⑶.确定显著性水平 ⑷.做出统计结论 第九讲 参数估计方法与 假设检验的基本原理 一 .总体参数估计的基本原理 根据样本统计量对相应总体参数所作的估计叫作总体参数估计。 总体参数估计分为点估计和区间估计。 由样本的标准差估计总体的标准差即为点估计;而由样本的平均数估计总体平均数的取值范围则为区间估计。 1.良好的点估计量应具备的条件 无偏性 如果一切可能个样本统计量的值与总体参数值偏差的平均值为0,这种统计量就是总体参数的无偏估计量。 有效性 当总体参数不止有一种无偏估计量时,某一种估计量的一切可能样本值的方差小者为有效性高,方差大者为有效性低。 良好的点估计量应具备的条件 一致性 当样本容量无限增大时,估计量的值能越来越接近它所估计的总体参数值,这种估计是总体参数一致性估计量。 充分性 一个容量为n的样本统计量,应能充分地反映全部n个数据所反映的总体的信息。 2.区间估计 以样本统计量的抽样分布(概率分布)为理论依据,按一定概率的要求,由样本统计量的值估计总体参数值的所在范围,称为总体参数的区间估计。 对总体参数值进行区间估计,就是要在一定可靠度上求出总体参数的置信区间的上下限。 置信区间 置信度,即置信概率,是作出某种推断时正确的可能性(概率)。 置信区间,也称置信间距(confidence interval,CI)是指在某一置信度时,总体参数所在的区域距离或区域长度。 置信区间是带有置信概率的取值区间。 显著性水平 对总体平均数进行区间估计时,置信概率表示做出正确推断的可能性,但这种估计还是会有犯错误的可能。显著性水平(significance level)就是指估计总体参数落在某一区间时,可能犯错误的概率,用符号α表示。      P=1-α ⑴要知道与所要估计的参数相对应的样本统计量的值,以及样本统计量的理论分布; ⑵要求出该种统计量的标准

文档评论(0)

1444168621 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档