- 1、本文档共7页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
昆明植物所天然ppaps类化学成分研究获进展-湘潭大学化学学院
昆明植物所天然ppaps类化学成分研究获进展
2014-10-24 16:24 来源:中国科学院网 2014-10-24 16:24:52来源:中国科学院网作者:责任编辑:
芒种花 匙萼金丝桃
在对匙萼金丝桃的研究过程中发现了两个结构新颖的ppaps类化合物。这两个化合物均具有十分刚性的笼状核心骨架,在生源上均应源自单环异戊烯基取代间苯三酚类化合物的环合。目前该研究成果发表于 org.lett上(/doi/abs/10.1021/ol502425),作者在该论文中还对这两种不同骨架的笼状ppaps类化合物的生源途径以及diels-alder反应在其中的作用做出了合理的讨论。
解读诺贝尔化学奖:绕过“束缚” 开启纳米微时代
2014-10-09 09:02:35??来源:中国新闻网?
据诺贝尔奖官方网站消息,诺贝尔化学奖于当地时间8日揭晓,获奖者为埃里克·贝齐格、威廉·莫纳和斯特凡·黑尔,他们的获奖理由是在超分辨率荧光显微技术领域取得的成就。
中新网10月9日电 综合消息,瑞典皇家科学院8日宣布,将2014年诺贝尔化学奖授予美国科学家埃里克·贝齐格、威廉·莫纳和德国科学家斯特凡·黑尔,以表彰他们为发展超分辨率荧光显微镜所作的贡献。
据报道,显微镜技术早于数百年前已逐步成形,分辨率亦随技术进步不断提升,但受制于光线波长限制,0.2微米成为显微镜难以突破的瓶颈。德国物理学家阿贝在1873年提出“绕射极限”概念,称0.2微米是传统光学显微技术解像度的物理极限。很多人就这样接受现实,但亦有小部分科学家坚定不移,矢志打破界限。
1990年完成博士学位后,黑尔一直寻找突破“绕射极限”的方法,更不惜从德国前赴芬兰,结果遇上当时仍处于研究阶段的荧光显微学。于是黑尔想到设计一种“纳米电筒”,可在纳米范围内扫描目标样本,并以此为基础构建“受激发射损耗”(STED)显微技术。虽然他的理论当时没有引起哄动,但已引来学界关注。黑尔其后制作STED显微镜,并在2000年实际展示其功能,声名大噪。
而在大西洋对岸的美国,莫纳1989年成为全球首位量度单分子光吸收量的科学家,并在8年后受到“绿色荧光蛋白”(GFP)启发,发展出能够开关GFP发光功能的方法。
活细胞超分辨率荧光成像技术
莫纳为科学家观察单一分子打开大门,更成为贝齐格的突破口。贝齐格多年来为突破“绕射极限”费尽脑筋,他利用莫纳对可开关荧光分子的研究,研发出“单分子显微技术”,通过重复扫描目标样本,并在每次拍摄时只让少量分子发光,最后把所得图像重迭在一起,得出解像度突破“绕射极限”的显微影像。
虽然目前也有电子显微镜等能提供高分辨率显微,然而这些方法的准备过程会杀死细胞,因此无法用于观察活细胞的活动。
诺贝尔化学奖评选委员会当天声明说,长期以来,光学显微镜的分辨率被认为不会超过光波波长的一半,这被称为“阿贝分辨率”。借助荧光分子的帮助,今年获奖者们的研究成果巧妙地绕过了经典光学的这一“束缚”,他们开创性的成就使光学显微镜能够窥探纳米世界。如今,纳米级分辨率的显微镜在世界范围内广泛运用,人类每天都能从其带来的新知识中获益。
诺贝尔化学奖评选委员会还指出,得奖者的研究允许人类观察病毒以至细胞内的蛋白质,对了解有关物质的功能作出重大贡献,例如可用于观察帕金森症、脑退化症和亨廷顿病患者体内的蛋白变化等。委员会赞扬三人的研究不仅为人类未来探求知识打下重要基础,他们现在仍然站在科研的最前线,通过科学研究为人类社会谋福祉。
北大专家解读2014诺贝尔化学奖 今年诺贝尔化学奖三位获奖人,打破了光学成像中长期存在的衍射极限,将荧光显微成像的分辨率带入到“纳米时代”,为生命科学研究带来巨大变化。
孙育杰(北京大学生命科学学院 生物动态光学成像中心 研究员)
2014年的诺贝尔化学奖在10月8日宣布授予美国科学家埃里克·白兹格(Eric Betzig)、威廉姆·莫纳尔(William Moerner)和德国科学家施泰方·海尔(Stefan Hell),以表彰他们在超高分辨率荧光显微技术领域的贡献。正如官方颁奖文中描述,这类技术从方法实现到在科学研究中大展身手虽然不过十几年时间,但已对多个领域产生显著推动,并且可以预言在未来将给生命科学研究带来巨大的变化。
1.什么是超高分辨率荧光显微技术
我们人眼一般最小能看见大约0.1毫米的东西, 而生物的基本单元 -- 细胞的直径平均约为20微米或0.02毫米, 所以对生物微观世界的观察需要使用光学显微镜。光学显微技术有很多优点,不但能放大微观世界,同时还对样品没有损害,并且可以特异地观察目标对象。这种特异性一般是通过荧光显微技术实现的。荧光是物质吸收光照后发出的光,一般发射光波长比吸收光波长较长,
您可能关注的文档
最近下载
- 铷铯及其化合物,中国前8强生产商排名及市场份额调研数据.docx
- AQ 1064-2008 煤矿用防爆柴油机无轨胶轮车安全使用规范.pdf VIP
- 面瘫(面神经麻痹)中医临床路径.pdf
- 面瘫(周围性面神经炎)-中医诊疗指南-等级评审.pdf
- 众泰-T600-产品使用说明书-T600 2.0T 豪华型DCT-JNJ6460QT-T600车系使用手册20131201.pdf
- (2025新版本)人教版一年级数学下册全册教案.doc
- 自学考试专题:微生物遗传与育种复习题含答案.doc
- 《微生物的遗传变异和育种》考试复习题库资料及答案.pdf
- CRRT枸橼酸凝.ppt
- 煤矿井下辅助运输设计标准.pdf VIP
文档评论(0)