2015-2016学年人教B版高中数学 选修1-2:第一章 统计案例 1《回归分析》课时1.ppt

2015-2016学年人教B版高中数学 选修1-2:第一章 统计案例 1《回归分析》课时1.ppt

  1. 1、本文档共30页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
2015-2016学年人教B版高中数学 选修1-2:第一章 统计案例 1《回归分析》课时1

3.1 回归分析的基本思想 及其初步应用 (第一课时); 1.通过典型案例的探究,进一步了解回归分析的基本思想、方法及其初步应用. 2.让学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法的特点,认识统计方法的应用,通过使用转化后的数据,求相关指数,运用相关指数进行数据分析、处理的方法. 3.从实际问题中发现已有知识的不足,激发好奇心,求知欲,通过寻求有效的数据处理方法,开拓学生的思路,培养学生的探索精神和转化能力,通过案例的分析使学生了解回归分析在实际生活中的应用,增强数学取之生活,用于生活的意识,提高学习兴趣.; 本节课通过必修3熟悉有例题回顾线性相关关系知识,通过实际问题中发现已有知识的不足,引出随机误差、残差、残差分析的概念,进而运用残差来进行数据分析,通过例题讲解掌握用残差分析判断线性回归模型的拟合效果。掌握建立回归模型的步骤。 本节内容学生内容不易掌握,通过知识整理与比较引导学生进行区分、理解。通过对典型案例的探究,练习进行巩固了解回归分析的基本思想方法和初步应用.;从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 怎样根据一名女大学生的身高预报她的体重,并预报一名身高为172 cm的女大学生的体重? ;根据必修3 2.3变量相关关系解决这个问题的方法: 1.先判断是两个变量是否具有线性相关关系 (1)作散点图,如图所示(见课本P82:图3.1-1);这些点并不都在同一条直线上,上述直线并不能精确地反映x与y之间的关系,y 的值不能完全由x 确定,它们之间是统计相关关系,y 的实际值与估计值之间存在着误差.;线性回归模型中随机误差的主要来源 ①线性回归模型中的预报值 与真实情况y引起的误差; ②观测与计算(用 代替b a)产生的误差; ③省略了一些因素的影响(如生活习惯等)产生的误差.;在线性回归模型中,e为用bx+a的预报真实值y的随机误差,它是一个不可观测的量,那么应该怎样研究随机误差?;坐标纵轴为残差变量,横轴可以有不同的选择; 若模型选择的正确,残差图中的点应该分布在以横轴??中心的带形区域; 对于远离横轴的点,要特别注意。;通过残差 来判断模型拟合的效果这种分析工作称为残差分析;通过残差表或残差图判断模型拟合的效果是直观判断,如何精确判断模型拟合的效果?;知识点 线性回归分析 1.对线性回归模型的三点说明 (1)非确定性关系:线性回归模型y=bx+a+e与确定性函数y=bx+a相比,它表示y与x之间是统计相关关系(非确定性关系),其中的随机误差e提供了选择模型的准则以及在模型合理的情况下探求最佳估计值a,b的工具.;(2)线性回归方程 中 , 的意义是:以 为基数,x每增加1个单位,y相应地平均增加 个单位. (3)线性回归模型中随机误差的主要来源 ①线性回归模型与真实情况引起的误差; ②观测与计算产生的误差; ③省略了一些因素的影响产生的误差.;2.线性回归模型的模拟效果 (1)残差图法:观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高.;(2)残差的平方和法:一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果.残差平方和越小的模型,拟合的效果越好. (3)R2法:R2的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.;3.相关系数与R2 (1)R2是相关系数的平方,其变化范围为[0,1],而相关系数的变化范围为[-1,1]. (2)相关系数可较好地反映变量的相关性及正相关或负相关,而R2反映了回归模型拟合数据的效果. (3)当|r|接近于1时说明两变量的相关性较强,当|r|接近于0时说明两变量的相关性较弱,而当R2接近于1时,说明线性回归方程的拟合效果较好.;【微思考】 (1)残差与我们平时说的误差是一回事儿吗? 提示:这两个概念在某程度上具有很大的相似性,都是衡量不确定性的指标,二者的区别是:误差与测量有关,误差可以衡量测量的准确性,误差越大表示测量越不准确;残差与预测有关,残差大小可以衡量预测的准确性,残差越大表示预测越不准确.;(2)R2与原来学过的相关系数r有区别吗? 提示:它们都是刻画两个变量之间的的相关关系的,区别是R2表示解释变量对预报变量变化的贡献率,其表达式为R2=1- ; 相关系数r是检验两个变量相关性的强弱程度, 其表达式为 ;建立回归模型的基本步骤 (1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量. (2)

文档评论(0)

yan698698 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档