- 1、本文档共33页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
燃烧法制备纳米CeO2粒子工艺设计
目 录
1 前言 1
1.1 本课题的现状 1
2
1.1.2 纳米材料的制备 4
1.1.3 纳米材料的应用 6
1.2二氧化铈 7
1.2.1 二氧化铈的应用 8
1.2.2 二氧化铈的制备 11
1.2.3 纳米CeO2的发展前景 13
1.3本课题所要研究的问题 14
2 实验 15
2.1 实验试剂 15
2.2 仪器与设备 15
2.3 实验步骤 16
2.2.1 凝胶溶液的配置 16
2.3.2 加热 17
2.3.3 制备干凝胶 17
2.3.4 燃烧 17
2.3.5 后处理 17
2.4 燃烧反应的绝热温度和相关热力学参数 17
19
2.5.1 丙三醇作还原剂 20
2.5.2 三异丙醇胺做还原剂 21
2.5.3 三乙醇胺做还原剂 22
3 结果与讨论 23
3.1 二氧化铈的影响因素 23
3.1.1 还原剂结构的影响 23
3.1.2反应温度的影响 23
凝胶烘干温度的影响 24
25
3.2 二氧化铈表征分析 26
3.2.1 X-射线衍射分析(XRD) 26
3.2.2 扫描电镜(SEM) 27
4 结论 27
参考文献 29
致谢 31
1 1.1 本课题的现状
纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。纳米粉末又称为超微粉或超细粉,一般指粒度在100以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。纳米纤维指直径为纳米尺度而长度较大的线状材料。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。
纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。
磁学性质
当代计算机硬盘系统的磁记录密度超过1.55 Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71 Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料,在光磁系统、光磁材料中有着广泛的应用电学性质
由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。
纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。
纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中应用广泛。由于量子尺寸效应,纳米半导体微粒的吸收光谱一般存在蓝移现象,其光吸收率很大,所以可应用于红外线感测器材料。”。纳米无机氧化物是纳米材料的重要组成部分,而稀土氧化物又是一个亮点,其中纳米二氧化铈的制备具有极其重要的现实意义。
1.2 二氧化铈
铈是人类的应用中最早应用的稀土元素,它是火石的主要成分,而人类应用火石己有数千年的历史。20世纪60年代初期,我国金属铈的生产走向了工业化,70年代铈的生产技术更加的成熟了。80年代初,金属铈的生产技术有了重大突破,采用了氧化铈熔盐电解法来制备铈产品,该技术的电流效率和金属回收率比较高,生产作业条件和环保状况相对较好。因此,氧化铈电解法逐步代替了氯化铈电解法,金属铈的规范化生产跃上了新的台阶。90年代以来,我国金属铈及其稀土混合金属的生产发展更加迅速。铈产品除在国内大量传统应用外,在高科技技术上的使用(如永磁材料及贮氢材料等的应用)也有更新的进展,出口量激增。因此,我国已成为世界铈及其稀土混合金属的生产大国、应用大国和出口大国,并均居全球首位,估计今后仍将维持着这种发展态势[18]。
金属铈拥有独特的物理和化学性
文档评论(0)