- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
一种基于Lambda架构电信数据平台解决方案
一种基于Lambda架构电信数据平台解决方案 摘 要传统电信数据平台是中心式的,由数据仓库和关系型数据库构成。通过SQL来查询有效的存储于关系型数据库中的用户数据和信令数据,只能对简单的问题进行分析,并且查询访问负载较低,不能应对海量数据规模的存储查询和实时性的需求。本文提出一种基于Lambda架构的电信数据平台解决方案,实现了低延时,可扩展,容错性高的电信数据平台。该数据平台既可以通过离线批处理方式对存储的全量历史数据进行迭代分析,也可以通过实时计算对实时生成的增量数据进行低延时的计算,是一种良好的电信数据平台解决方案
【关键词】电信数据平台 Lambda架构 离线批处理 实时计算
1 引言
电信数据平台承载着电信网中各类用户数据的收集过滤,存储聚合,分析挖掘等功能,为企业对于用户的各种决策提供一定数据支撑。同时,电信数据平台也通过收集相关的信令数据,监控电信网的实际运行情况,是企业的核心系统之一
传统电信数据平台由数据仓库和关系型数据库构成。数据采集端收集各种信息,如用户状态,用户位置,终端日志,网络状态等一系列异构的数据信息,并统一汇总到数据仓库。数据仓库中存储有全量信息,通过运行各种ETL程序,将庞大的数据仓库的信息分门别类转移到例如Oracle,DB2,Sybase等各类关系型数据库的各个表中。数据分析人员一般通过类似于商业智能的平台,通过撰写SQL语句,提取关系型数据库中的有用数据,来简单的分析各类问题。传统的电信数据平台,具有集中式,造价昂贵,部署和运维复杂等特点。在相当长一段时期内,由于单位时间生成的数据规模没有显著增加,没有到达数据库的使用瓶颈,传统的电信数据平台可以较好的应对各种需求。但随着单位时间内,采集端生成的数据飞速膨胀,每天生成数十亿乃至上百亿的各类异构数据需要存储和分析,传统的电信数据平台逐渐暴露了其不足之处
传统的电信数据平台组织方案有以下两个方面的不足需要改进。首先是对于海量数据存储和查询较为困难。中心型的关系型数据库难以承受较高的用户查询负载,并且关系型数据库的成本开销较为昂贵,并不支持简单的线性扩展,若采用数据库分库和分表等辅助手段,则整个数据平台的复杂性有较大提升并且难以维护,所以传统的电信数据平台不能应对海量数据的存储和查询。第二点不足是实时性不足。一般而言,数据在数据仓库构建就需要很长的数据,由数据仓库经ETL程序归并到各类数据库同样耗时巨大且有很多冗余的处理,同时批处理系统分析数据的延时在小时级别以上,随着越来越多数据采集端的部署,数据产生速度越来越快,规模越来越大,实时对数据进行分析,并把结果进行可视化,对于实时监控的需求越来越重要,传统的电信数据平台延时较大,不能够适应数据实时性的要求
针对以上分析的不足,本文提出一种基于Lambda架构的电信数据平台解决方案。Lambda架构,是Nathan Marz提出的一个实时大数据处理框架,具备高吞吐量和低延时的特点。本文结合Lambda架构,阐述了新型电信数据平台的基本构成和各层的职责,同时也具体介绍了各层使用的互联网开源大数据项目,描述了整个工作流程和数据流向,体现了新型电信数据平台具备的高吞吐量,低延时,高容错性的特点,解决了传统电信数据平台难以应对海量数据存储和查询,以及不能实时分析的不足。为电信网各数据平台在新需求下的转型提供了一个良好的尝试
2 相关技术介绍
2.1 Lambda架构
Lambda架构是由Nathan Marz提出的一种大数据处理架构,结合了批处理计算和实时计算的特点,融合了不可变性,读写分离和复杂性隔离等一系列架构原则,具备高容错、低延时和可扩展等特点。一般分为批处理层,服务层和速度层,如图1所示
批处理层对全量数据进行迭代计算,全量数据可以认为是一个不可变的持续增长的数据集。批处理层对于全量数据进行批处理计算,得到批处理视图,存储到服务层。服务层可以根据查询条件,对批处理视图的结果进行再次合并等处理。批处理层通过定时的重复批处理视图的更新,可以保证数据的高容错性,但是计算时间一般较长,延时较大,适用于全局规模的分析和预计算。批处理层一般由大数据批处理框架来实现
服务层的任务是对于用户查询提供支持。它根据查询条件,随机访问视图,组合批处理视图和实时视图的结果,最终反馈给用户。服务层一般由NoSql数据库实现,但是为了降低复杂性,不允许对视图结果进行随机写操作,仅提供对于批处理视图和实时视图的加载和随机读取操作
速度层负责实时计算增量数据。由于批处理计算比较耗时,随时而来的实时增量数据等不到有效计算,通过引入速度层解决这一问题。速度层只处理最近的数据,采用快速,增量的算法,通过实时计算,维护较小规模的实时视图,是对批处理视图更新是较高延时的一种补充。
您可能关注的文档
- SJ集团建筑工程项目造价管理中问题及解决措施.doc
- SPECT―CT及MRI在鼻咽癌早期颅底侵犯方面比较探究.doc
- SPOC及任务型语言教学融合探究.doc
- SPOC混合教学模式在C语言程序设计课程应用.doc
- SPOC网络教学平台在《财务会计》课程教学中应用.doc
- Study on the Micro―class Types Used in College English Audio―visual Course.doc
- SQL数据库背景下企业信息管理系统设计.doc
- SWOT分析在门诊前臂骨折手法复位术后健康教育中应用及效果.doc
- TDS时钟告警导致LTE强干扰案例分析.doc
- TD―LTE网络小区重叠覆盖优化探析.doc
文档评论(0)