- 1、本文档共14页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于关联规则乳腺肿块多模检索
基于关联规则乳腺肿块多模检索 摘要:乳腺影像案例不仅具有图像的底层特征,同时也有图像的语义特征。为了实现乳腺影像的高效检索,提高计算机辅助诊断的确信度,提出了一种基于关联规则的多模检索方法。首先,采用基于关联规则的特征选择算法选择出与影像语义相关的底层特征,实现特征降维,利用Apriori算法挖掘被选择的特征与语义特征之间的关联规则。然后,利用关联分类引擎算法根据得到的关联规则构建关联分类模型,实现由底层特征获知视觉语义特征的目的。最后,将关联分类模型得到的语义特征作为输入语义,与图像的底层特征相结合,进行图像相似性度量,实现多模检索。通过查准率和查全率以及相关排序平均值等进行了实验对比,实验结果表明,提出的多模检索方法有效的提高了图像的检索精度并且能够由图像的底层特征获知图像的视觉语义特征。该方法缩减了底层特征和视觉语义特征之间的语义鸿沟,提高了图像的检索性能,能够为医生提供更有意义的决策支持
关键词:乳腺影像;关联规则;特征选择;关联分类;多模检索
DOI:1015938/jjhust201702023
中图分类号: TN91173
文献标志码: A
文章编号: 1007-2683(2017)02-0124-05
Abstract:The mammogram case has images of low level features and semantic features In order to achieve efficient retrieval of breast imaging cases, and enhance the certainty of computer aided diagnosis, a multimode retrieval method based on association rules is proposed in this paper First of all, feature selection algorithm based on the association rules can be used to select the low level features associated with image semantic features, to achieve the dimension reduction The associative rules which between the selected features and the semantic features can be excavated by using the Apriori algorithm And then, the associative classifier engine will be used to build the associative classification model depend on the associative rules to capture the visual semantic features Finally, take obtained semantic from the association classification as input semantic, combining with the low level features of image, to implement the mammogram case multimode retrieval We conducted experiments comparing by precision and recall rate and relevance ranking average value and so on, as the results show, multi mode retrieval method proposed by this paper can effectively improve the performance of breast imaging case retrieval, and provide visual semantic features of image by its lowlevel features Multimode retrieval reduced the semantic gap between image low level features and visual semantic features, improved the accuracy of image retrieval and provided m
文档评论(0)