- 1、本文档共16页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于卷积神经网络古玩图片分类方法
基于卷积神经网络古玩图片分类方法 摘要摘要:针对现有的网上古玩图片分类算法需要人工设计特征、依赖个人经验的不足,提出一种基于卷积神经网络的分类方法。将背景分离后的图片输入网络,自动提取特征进行分类,在达到较好分类结果的同时网络结构更加简单,并且设置合适的特征图个数使网络取得较好的识别率。实验结果表明,该方法应用卷积神经网络能够解决网上古玩图片分类问题,与传统卷积神经网络相比网络结构更简单、识别率更高;与常用的Hog特征相比,在测试时间相近的情况下该方法识别率更高
关键词关键词:深度学习;卷积神经网络;古玩图片;图像识别
DOIDOI:10.11907/rjdk.162768
中图分类号:TP317.4
文献标识码:A文章编号文章编号2017)005017405
0引言
随着电子商务的发展,大批艺术品交易网站随之兴起,藏品交易规模也越来越大。而当前的古玩网上交易平台还不能够实现对现有藏品图片的自动分类,客户在寻找目标藏品时不得不在众多图片中一一浏览。因此需要一种有效的方法来完成面向图像内容的分类
在基于内容的图像检索领域,常使用人工设计的特征-如根据花瓶、碗、盘子的不同形态特征:目标轮廓的圆度、质心、宽高比等[1],继而使用BP神经网络、SVM分类器等对特征进行学习分类。文献[2]基于植物叶片的形状特征,如叶片形状的狭长度、矩形度、球状性、圆形度、偏心率、周长直径比等,利用BP神经网络实现对植物叶片进行分类。文献[3]研究印品图像的各类形状缺陷,利用图像缺陷形状的轮廓长度、面积和圆形度等几何特征,导入SVM分类器进行训练,得到分类器模型实现分类。文献[4]提出了一种基于Zernike矩的水果形状分类方法,通过提取图像中具有旋转不变性的Zernike矩特征,并运用PCA方法确定分类需要的特征数目,最后将这些特征输入到SVM分类器中,完成水果形状的分类。上述方法都要求对目标形状分割的准确性,而分割过程中由于存在目标阴影、目标分割不完整问题,会影响到人工特征的准确选取。除了上述人工特征外,最常用的特征是HOG[5,6]、SIFT[7,8]等。HOG的核心思想是所检测的局部物体外形能够被光强梯度或边缘方向的分布所描述。HOG表示的是边缘结构特征,因此可以描述局部形状信息。SIFT在图像的空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量。SIFT特征对于旋转、尺度缩放、亮度变化保持不变。但是,这两种特征在实际应用中,描述子生成过程冗长、计算量太大。而且在上述方法中特征设计需要启发式的方法和专业知识,很大程度上依靠个人经验
卷积神经网络不需要手动设计提取特征,可以直接将图片作为输入,隐式地学习多层次特征,进而实现分类[9]。相比目前常用的人工设计特征然后利用各分类器,具有明显的优势。近年来,卷积神经网络已成为语音、图像识别领域研究热点。它的权值共享特点使得网络复杂度降低,权值数量减少。而且,卷积神经网络直接将图片作为输入,避免了复杂的特征设计和提取,具有一定的平移、缩放和扭曲不变性[10]。本文采用卷积神经网络对古玩图片进行分类。首先,将背景分离后的图片作为网络的输入,相比原图作为输入,此方法的网络结构更加简单。然后,卷积层通过不同的卷积核对输入图片进行卷积得到不同特征图,采样层进一步对特征图进行二次提取,最终提取到合适的特征输入分类器进行分类,而在卷积层、采样层中特征图的大小、数目都会影响到网络的分类能力。因此,本文通过优化网络参数,使网络达到较好的分类效果
1卷积神经网络
1989年,LECUN等[11]提出了卷积神经网络(Convolution Neural Networks,CNN),CNN是一种带有卷积结构的深度神经网络,一般至少有2个非线性可训练的卷积层、2个非线性的固定采样层和1个全连接层,一共至少5个隐含层[12]。百度于2012年底将深度学习技术成功应用于自然图像OCR识别和人脸识别,此后深度学习模型被成功应用于一般图片的识别和理解。从百度经验来看,深度学习应用于图像识别不但大大提升了准确性,而且避免了人工特征抽取的时间消耗,从而大大提高了在线计算效率[13]
卷积神经网络作为一种高效的深度学习方法[14],在许多图像识别方面取得了很好的成效[1519]。该网络作为一种多隐层神经网络,可以提取图像的多层次特征进行识别
卷积神经网络主要包括卷积层和采样层,卷积层通过可学习的卷积核对输入图片进行卷积得到特征图,卷积操作即加强了输入图片的某种特征,并且降低噪声。卷积之后的结果通过激活函数(通常选择Sigmoid函数或Tanh函数)作用输出构成该层的特征图。特征图上的每一个神经元只与输入图片的一个局部区域连接,每个神经元提取的是该局部区域的特
文档评论(0)